共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Epidermal growth factor (EGF) mimicked the effect of insulin to activate glycogen synthase and stimulate glycogen synthesis in isolated rat hepatocytes. Both agents required glucose (greater than 5 mM) and had similar time courses of action. The maximum effect of EGF was approx. 70% of that of insulin, and the half-maximally effective concentrations were 9 nM and 4 nM respectively. Combinations of the two agents produced additive responses. EGF also resembled insulin in its ability to inhibit the effects of 0.1-1.0 nM-glucagon on cyclic AMP and glycogen phosphorylase in hepatocytes. The maximum effect of EGF was approx. 70% of that of insulin, and the half-maximally effective concentrations were approx. 5 nM and 0.5 nM respectively. EGF and insulin inhibited phosphorylase activation by exogenous cyclic AMP, and inhibited cyclic AMP accumulation induced by forskolin. They also inhibited phosphorylase activation provoked by phenylephrine, but not by vasopressin. EGF added alone rapidly activated phosphorylase and increased cytosolic [Ca2+], but the effects were no longer apparent at 5 min and were smaller than those of vasopressin. Insulin did not induce these changes. In hepatocytes previously incubated with myo-[3H]inositol, EGF did not significantly increase myo-inositol 1,4,5-trisphosphate. However, its ability to increase cytosolic [Ca2+] was blocked by neomycin, an inhibitor of phosphatidylinositol bisphosphate hydrolysis. It is concluded that some, but not all, of the effects of EGF in liver are strikingly similar to those exerted by insulin, suggesting that these agents may have some similar mechanisms of action in this tissue. 相似文献
4.
5.
6.
7.
D G Kay W H Lai M Uchihashi M N Khan B I Posner J J Bergeron 《The Journal of biological chemistry》1986,261(18):8473-8480
The rat liver epidermal growth factor (EGF) receptor was assessed for EGF-dependent autophosphorylation as well as phosphorylation of a defined exogenous substrate in purified plasmalemma and Golgiendosome fractions isolated from rat liver homogenates. While EGF-dependent kinase activity was readily detected in plasmalemma the corresponding activity in Golgi-endosome fractions required detergent. Consequent to the systemic injection of EGF in vivo, the majority (approximately 60%) of receptor as evaluated by 125I-EGF binding was rapidly lost (T 1/2 approximately 8 min) from the plasmalemma and correspondingly accumulated in the Golgi-endosome fraction in a dose-dependent manner. Electron microscope radioautography of 125I-EGF uptake into Golgi-endosome fractions identified internalization into lipoprotein-filled vesicles of heterogenous size and shape but not into stacked saccules of the Golgi apparatus. Evaluation of receptor kinase activity in plasmalemma fractions isolated at various times after EGF injection in vivo showed more rapid loss of EGF-dependent autophosphorylation activity (T 1/2 approximately 10 s) than of receptor content (T 1/2 approximately 8 min). In contrast to the EGF receptor kinase of the plasmalemma fraction, kinase activity accumulating in endosomes was activated, i.e. maximally stimulated, in the absence of EGF or Triton X-100 in vitro. Furthermore, following the peak time of accumulation of EGF receptor kinase in endosomes (5-15 min) EGF-dependent autophosphorylation activity and EGF receptor content were lost more slowly (T 1/2 approximately 27 and 87 min for the loss of autophosphorylation activity and receptor content, respectively). The rapidity of translocation of activated EGF receptor into endosomes (30 s) and the dose response to low levels (1 microgram) of EGF injected are consistent with a physiological role for internalized EGF receptor kinase activity. 相似文献
8.
Recently, we have demonstrated that certain neurotrophic factors can induce oxidative neuronal necrosis by acting at the cognate tyrosine kinase-linked receptors. Epidermal growth factor (EGF) has neurotrophic effects via the tyrosine kinase-linked EGF receptor (EGFR), but its neurotoxic potential has not been studied. Here, we examined this possibility in mouse cortical culture. Exposure of cortical cultures to 1-100 ng/ml EGF induced gradually developing neuronal death, which was complete in 48-72 h; no injury to astrocytes was noted. Electron microscopic findings of EGF-induced neuronal death were consistent with necrosis; severe mitochondrial swelling and disruption of cytoplasmic membrane occurred, whereas nuclei appeared relatively intact. The EGF-induced neuronal death was accompanied by increased free radical generation and blocked by the anti-oxidant Trolox. Suggesting mediation by the EGFR, an EGFR tyrosine kinase-specific inhibitor, C56, attenuated EGF-induced neuronal death. In addition, inhibitors of extracellular signal-regulated protein kinase 1/2 (Erk-1/2) (PD98056), protein kinase A (H89), and protein kinase C (GF109203X) blocked EGF-induced neuronal death. A p38 mitogen-activated protein kinase inhibitor (SB203580) or glutamate antagonists (MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione) showed no protective effect. The present results suggest that prolonged activation of the EGFR may trigger oxidative neuronal injury in central neurons. 相似文献
9.
10.
11.
Epidermal growth factor (urogastrone)-stimulated gluconeogenesis in isolated mouse hepatocytes 总被引:1,自引:0,他引:1
In freshly isolated mouse hepatocytes obtained from fasted animals, we have studied the receptors for epidermal growth factor urogastrone (EGF-URO) in terms of the electrophoretic profile, ligand affinity, and numbers of EGF-URO receptors present on the cells, and also in terms of the ability of EGF-URO to stimulate gluconeogenesis, as reflected by the increased incorporation of [3-14C]pyruvate into glucose. The effects of EGF-URO were compared with those of glucagon. Ligand-binding studies revealed that the mouse hepatocytes possess an unusually high number of EGF-URO receptors (about 3 X 10(6) binding sites/cell), with a ligand dissociation constant of 4.4 nM. The binding of EGF-URO by mouse hepatocytes was more than 10-fold higher than the previously measured binding of EGF-URO by rat hepatocytes. Crosslink-labeling studies, coupled with gel electrophoretic analysis, demonstrated the presence of intact EGF-URO receptors, although some receptor processing had occurred during the isolation procedure. EGF-URO was able to stimulate the incorporation of 3-14C-labeled pyruvate into glucose; glucagon was unable to do so. In contrast, in rat hepatocytes isolated and assayed under identical conditions, glucagon (10 nM) caused a marked (250%) stimulation of the incorporation of pyruvate into glucose. Maximally, EGF-URO caused a 34% increase in the incorporation of [3-14C]pyruvate into glucose; a half-maximal effect was observed at a concentration of 2.5 nM EGF-URO. The stimulatory effect of EGF-URO was not dependent on the concentration of pyruvate, lactate, glucose, or calcium in the incubation medium. Although raising the concentration of pyruvate in the incubation medium increased the incorporation of [3-14C]pyruvate into glycogen, EGF-URO did not cause any change in the incorporation of radioactivity into glycogen. Overall, our data point to marked differences between rat and mouse liver preparations, in terms of the hormonal regulation of glucose metabolism, and our work documents a potential role for the remarkably high number of mouse hepatocyte EGF-URO receptors in terms of the modulation of gluconeogenesis in the mouse. 相似文献
12.
Epidermal growth factor receptor threonine and serine residues phosphorylated in vivo 总被引:9,自引:0,他引:9
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function. 相似文献
13.
Previous studies have reported that the proliferation of A431 cells, a human squamous cell carcinoma cell line, was stimulated by picomolar epidermal growth factor (EGF) but inhibited by nanomolar EGF. This biphasic dose-response phenomenon is not observed in normal human epithelial cells where nanomolar EGF is usually mitogenic. We have examined the effects of inhibitory and stimulatory concentrations of EGF on the growth and differentiation of A431 cells. In the presence of 100 pM EGF, A431 cells showed a mild increase in growth rate (129% of control) compared to cells grown in the absence of EGF. At 10 nM EGF, growth inhibition to 63% of control was observed. EGF at 10 nM stimulates a twofold increase both in cornified envelope formation and in epidermal transglutaminase activity, suggesting that high concentrations of EGF induce terminal differentiation in A431 cells. Mitogenic concentrations of EGF (100 pM) had no significant effect on these differentiation markers. Chronic exposure of A431 cells to 20 or 50 nM EGF resulted in EGF-resistant A431 variants that are neither growth arrested nor induced to terminally differentiate by 10 nM EGF. Removal of EGF from the growth medium of the EGF-resistant cells resulted in the reversion of these cells back to the wild-type A431 biphasic response pattern within 2 weeks. Our results suggest that A431 cells have the capacity to non-mutatively alter their response pattern to EGF in vitro to maintain themselves in a state of optimum proliferation and away from terminal differentiation. © 1993 Wiley-Liss, Inc. 相似文献
14.
Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells 总被引:1,自引:0,他引:1
The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with acting in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process. 相似文献
15.
16.
Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor 总被引:52,自引:0,他引:52
Epidermal growth factor (EGF) receptor from A-431 cells was purified by affinity chromatography with monoclonal anti-receptor antibodies. The purified radiolabeled receptor was incubated with EGF and then analyzed by gel electrophoresis under nondenaturing conditions. In these gels, the EGF receptor migrates in two forms: a fast-migrating (low) form and an EGF-induced slow-migrating (high) form. On the basis of the various control and calibration experiments described, it is concluded that the low form represents the monomeric 170-kilodalton EGF receptor and the high form represents an EGF receptor dimer. The binding of EGF causes a rapid, temperature-sensitive dimerization of the EGF receptor. Receptor dimerization is fully reversible and involves saturable, noncovalent interactions that are stable at neutral pH and in nonionic detergents. Both the monomeric and dimeric forms of the receptor bind EGF and undergo self-phosphorylation. The dimeric form of the receptor may possess higher ligand binding affinity, and it seems to be phosphorylated earlier than the monomeric form following the addition of EGF and [gamma-32P]ATP. On the basis of these results, it is concluded that receptor oligomerization is an intrinsic property of the occupied EGF receptor and that it may play a role in the activation of the kinase function and the subsequent transmembrane signaling process. 相似文献
17.
Epidermal growth factor 总被引:5,自引:0,他引:5
Stanley Cohen 《In vitro cellular & developmental biology. Plant》1987,23(4):239-246
18.
19.