首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.  相似文献   

2.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

3.
Antimicrobial activity of antiproteinases   总被引:11,自引:0,他引:11  
Low-molecular-mass neutrophil elastase inhibitors have been shown to be important in the control of lung inflammation. In addition to inhibiting the enzyme neutrophil elastase, these low-molecular-mass compounds (10 kDa) have been shown to have other activities. For example, secretory leucocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor/SKALP (skin-derived antileucoproteinase)/elafin have also been shown to have "defensin"-like antimicrobial activities. Indeed, these inhibitors have antimicrobial properties in vitro against bacteria, fungi and, potentially, HIV. In addition, we have shown, using an adenovirus-mediated gene transfer overexpression strategy, that elafin is also active against Pseudomonas aeruginosa infection in mice in vivo. The mechanism of action is currently under investigation. In addition to these direct or indirect effects on microbes, it has been shown that lipopolysaccharide is able to up-regulate SPLI production in macrophages in vitro, and that the addition of recombinant SLPI to human monocytes or the transfection of macrophages with SPLI can down-regulate pro-inflammatory mediators such as tumour necrosis factor, presumably to limit self-damaging excessive inflammation. Using viral gene transfer vectors, we are currently investigating the potential of these inhibitors in various models of inflammation in vivo.  相似文献   

4.
Neutrophil elastase and cathepsin G are abundant intracellular neutrophil proteinases that have an important role in destroying ingested particles. However, when neutrophils degranulate, these proteinases are released and can cause irreparable damage by degrading host connective tissue proteins. Despite abundant endogenous inhibitors, these proteinases are protected from inhibition because of their ability to bind to anionic surfaces. Plasminogen activator inhibitor type-1 (PAI-1), which is not an inhibitor of these proteinases, possesses properties that could make it an effective inhibitor of neutrophil proteinases if its specificity could be redirected. PAI-1 efficiently inhibits surface-sequestered proteinases, and it efficiently mediates rapid cellular clearance of PAI-1-proteinase complexes. Therefore, we examined whether PAI-1 could be engineered to inhibit and clear neutrophil elastase and cathepsin G. By introducing specific mutations in the reactive center loop of wild-type PAI-1, we generated PAI-1 mutants that are effective inhibitors of both proteinases. Kinetic analysis shows that the inhibition of neutrophil proteinases by these PAI-1 mutants is not affected by the sequestration of neutrophil elastase and cathepsin G onto surfaces. In addition, complexes of these proteinases and PAI-1 mutants are endocytosed and degraded by lung epithelial cells more efficiently than either the neutrophil proteinases alone or in complex with their physiological inhibitors, alpha1-proteinase inhibitor and alpha1-antichymotrypsin. Finally, the PAI-1 mutants were more effective in reducing the neutrophil elastase and cathepsin G activities in an in vivo model of lung inflammation than were their physiological inhibitors.  相似文献   

5.
An inhibitor of human neutrophil elastase (HNE) has recently received a US patent and is undergoing pre-clinical development, with Phase I clinical trials anticipated to start in 1998. The first clinical trials in patients are likely to be in cystic fibrosis (CF), where it is hoped that it will block the deterioration of the lung and help reduce bacterial infections and the production of mucus. EPI-HNE-4 (which stands for engineered protease inhibitor, human neutrophil elastase 4) is the first pharmaceutical agent to be discovered by phage display technology, and the lead HNE inhibitor from Dyax Corp. (Cambridge, MA, USA). Dyax hope it will be effective in treating pulmonary diseases where uncontrolled production of HNE are implicated, such as CF, bronchitis and emphysema. L. Edward Cannon, President of Dyax's Research Division, comments that for these conditions they believe inhibitors of HNE offer one of the first treatments to target the underlying inflammation rather than the infections that arise from them. EPI-HNE-4 was discovered through Dyax's proprietary phage display technology. The scaffold (starting point) was inter alpha-trypsin inhibitor (IATI), a small, stable protein for which a three-dimensional structural model was available. Another advantage was that IATI was known to be safe when administered therapeutically in humans. Any scaffold can be used, says Cannon, if the choice has the properties required; `all you have to do is modify the surface of the molecule to achieve the binding activity wanted.' Dyax actually made 50 million variants of IATI, from which they identified and chose the one lead inhibitor. Four amino acid changes were all that were needed to convert IATI into an elastase inhibitor. This technology has also allowed them to identify the specific chemical features required in any protein to inhibit HNE. Inhibitors of HNE are effective in animal models of emphysema: Dyax have shown that giving the HNE inhibitor to Syrian golden hamsters that have previously been given HNE reverses the otherwise fatal consequences of acute haemorrhage in the lungs, allowing them to survive. In another project, Dyax is developing EPI-HNE-4 as a targeting agent for imaging sites of inflammation and infection. The inhibitor can be labelled with the radioisotope technetium-99m (99mTc), which is a strong γ-emitter. EPI-HNE-4 can be used as a diagnostic imaging agent because it rapidly penetrates to, and is retained at, sites of inflammation. One potential indication is the diagnosis of appendicitis; currently 25–30% of appendix operations are later found to be unnecessary. EPI-HNE-4 could also be used to find the anatomical site of `fever of unknown origin'; for example, when patients have an elevated temperature and physicians want to know where the site of inflammation or infection is to be able to treat the cause effectively. The only current alternative involves removing neutrophils from the body, labelling them with 99mTc and then injecting them back into the patient, where they migrate to sites of inflammation. The approach takes a couple of days and requires considerable technical skill because neutrophils are extremely fragile. Using the new method, it is hoped that images could be produced within minutes, without the isolation and labelling of autologous cells.  相似文献   

6.
Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.  相似文献   

7.
Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Ps-) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (~2-fold) in the Ps+ and Ps- groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps- samples, despite the possible release of the ~31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection.  相似文献   

8.
Leukocyte elastase inhibitor (LEI) is a cytosolic component of lung macrophages and blood leukocytes that inhibits neutrophil elastase. LEI is a member of the serpin superfamily, these proteins, mostly protease inhibitors, are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the hinge region of the reactive centre loop into a beta-sheet of the inhibitor. In this work three mutations were produced in the hinge region of elastase inhibitor that abolish the inhibition activity of LEI and transform the protein in a substrate of the elastase. This result demonstrates that the inhibitory mechanism of serpin is common to LEI.  相似文献   

9.
10.
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.  相似文献   

11.
Mediators released from polymorphonuclear neutrophils, in particular elastase, are known to induce acute edematous lung injury. In this study we show that the pulmonary edema in isolated perfused rabbit lungs caused by activated neutrophils via release of elastase is significantly decreased by the Kunitz-type Inhibitor BbCI (10(-5) M) from Bauhinia bauhinoides to the same degree as by eglin C (10(-5) M) from Hirudo medicinalis, which was used as a reference. The highly homologous proteinase inhibitor BrPI (10(-5) M) from Bauhinia rufa, however, did not reduce edema formation. The major difference between these inhibitors is the much higher Ki value of BrPI (Ki = 38 nM) for elastase compared to BbCI (Ki = 5.3 nM) and eglin C (Ki = 0.2 nM), respectively. Elastase liberation from activated PMNs was not influenced by the inhibitors. Our results indicate that BbCI can be a useful tool to study the role of neutrophil elastase in pathophysiological processes.  相似文献   

12.
Stimuli-induced expression of certain mucin genes has been demonstrated to occur as a result of ligand-dependent activation of the epidermal growth factor receptor (EGFR). In particular, MUC5AC expression can be induced by cigarette-smoke, neutrophil elastase and lipopolysaccharide (LPS) following activation of tumour necrosis factor alpha-converting enzyme. We now show that a large of number of stimuli relevant to the cystic fibrosis lung - neutrophil elastase, LPS, Pam3Cys-Ser-(Lys)4 Hydrochloride (a lipopeptide analogue), CpG DNA (which mimics bacterial DNA) and cystic fibrosis bronchoalveolar lavage fluid - can activate MUC1 and 2 expression as well as MUC5AC expression in lung epithelial cells via an EGFR-dependent mechanism. In addition, we demonstrate that the immunomodulatory anti-protease, secretory leucoprotease inhibitor, can inhibit stimuli-induced MUC1, 2 and 5AC expression via a mechanism that is primarily dependent on the inhibition of transforming growth factor type alpha release. Therefore, mucin gene expression, induced by cystic fibrosis respiratory stimuli, can be inhibited by secretory leucoprotease inhibitor indicating its potential importance as an anti-mucin agent in cystic fibrosis and other chronic lung diseases characterized by mucus hypersecretion.  相似文献   

13.
Serine proteinases from inflammatory cells, including polymorphonuclear neutrophils, are involved in various inflammatory disorders, like pulmonary emphysema and rheumatoid arthritis. Inhibitors of these serine proteinases are potential drug candidates for the treatment of these disorders, since they prevent the unrestricted proteolysis. This study describes a novel specific antistasin-type inhibitor of neutrophil serine proteinases, we called Fahsin. This inhibitor was purified from the Nile leech Limnatis nilotica, sequenced and heterologously expressed using a synthetic gene in the methylotrophic yeast Pichia pastoris, yielding 0.5 g(-l) of the protein in the culture medium. Recombinant Fahsin was purified to homogeneity and characterised by N-terminal amino acid sequencing and mass spectrometry. Inhibition-kinetic analysis showed that recombinant Fahsin is a fast, tight-binding inhibitor of human neutrophil elastase with inhibition constant in the nanomolar range. Furthermore, recombinant Fahsin was, in contrast to various other neutrophil elastase inhibitors, insensitive to chemical oxidation and biological oxidation via myeloperoxidase-generated free oxygen radicals. Thus, Fahsin constitutes a novel member of a still expanding family of naturally occurring inhibitors of serine proteinases with potential therapeutic use for treatment of human diseases.  相似文献   

14.
We have purified to homogeneity two forms of a new serine protease inhibitor specific for elastase/chymotrypsin from the ovary gland of the desert locust Schistocerca gregaria. This protein, greglin, has 83 amino acid residues and bears putative phosphorylation sites. Amino acid sequence alignments revealed no homology with pacifastin insect inhibitors and only a distant relationship with Kazal-type inhibitors. This was confirmed by computer-based structural studies. The most closely related homologue is a putative gene product from Ciona intestinalis with which it shares 38% sequence homology. Greglin is a fast-acting and tight binding inhibitor of human neutrophil elastase (k(ass)=1.2x10(7) M(-1) x s(-1), K(i)=3.6 nM) and subtilisin. It also binds neutrophil cathepsin G, pancreatic elastase and chymotrypsin with a lower affinity (26 nM< or =K(i)< or =153 nM), but does not inhibit neutrophil protease 3 or pancreatic trypsin. The capacity of greglin to inhibit neutrophil elastase was not significantly affected by exposure to acetonitrile, high temperature (90 degrees C), low or high pH (2.5-11.0), N-chlorosuccinimide-mediated oxidation or the proteolytic enzymes trypsin, papain and pseudolysin from Pseudomonas aeruginosa. Greglin efficiently inhibits the neutrophil elastase activity of sputum supernatants from cystic fibrosis patients. Its biological function in the locust ovary gland is currently unknown, but its physicochemical properties suggest that it can be used as a template to design a new generation of highly resistant elastase inhibitors for treating inflammatory diseases.  相似文献   

15.
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin‐2 are endogeneous low‐molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol‐based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin‐2 variant, trappin‐2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin‐2 A62L are tight‐binding inhibitors of all three NSPs with subnanomolar Kis, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane‐bound forms of all three NSPs. The trappin‐2 A62L and elafin‐SLPI chimeras, like wild‐type elafin and trappin‐2, can be covalently cross‐linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti‐inflammatory agents.  相似文献   

16.
Neutrophil proteinase-mediated lung tissue destruction is prevented by inhibitors, including elafin and its precursor, trappin. We wanted to establish whether neutrophil-derived oxidants might impair the inhibitory function of these molecules. Myeloperoxidase/H(2)O(2) and N-chlorosuccinimide oxidation of the inhibitors was checked by mass spectrometry and enzymatic methods. Oxidation significantly lowers the affinities of the two inhibitors for neutrophil elastase (NE) and proteinase 3 (Pr3). This decrease in affinity is essentially caused by an increase in the rate of inhibitory complex dissociation. Oxidized elafin and trappin have, however, reasonable affinities for NE (K(i) = 4.0-9.2 x 10(-9) M) and for Pr3 (K(i) = 2.5-5.0 x 10(-8) M). These affinities are theoretically sufficient to allow the oxidized inhibitors to form tight binding complexes with NE and Pr3 in lung secretions where their physiological concentrations are in the micromolar range. Yet, they are unable to efficiently inhibit the elastolytic activity of the two enzymes. At their physiological concentration, fully oxidized elafin and trappin do not inhibit more than 30% of an equimolar concentration of NE or Pr3. We conclude that in vivo oxidation of elafin and trappin strongly impairs their activity. Inhibitor-based therapy of inflammatory lung diseases must be carried out using oxidation-resistant variants of these molecules.  相似文献   

17.
Human neutrophil elastase (HNE), a serine protease, is involved in the regulation of inflammatory processes and controlled by endogenous proteinase inhibitors. Abnormally high levels of HNE can cause degradation of healthy tissues contributing to inflammatory diseases such as rheumatoid arthritis, and also psoriasis and delayed wound healing. In continuation of our research on HNE inhibitors we have used the recently developed binding mode model for a group of cinnamic acid derivative elastase inhibitors and created bornyl (3,4,5-trihydroxy)-cinnamate. This ligand exhibited improved binding affinity predicted by means of free energy calculations. An organic synthesis scheme for the ligand was developed and its inhibitory activity was tested toward the isolated enzyme. Its IC(50) value was found to be three times lower than that of similar compounds, which is in line with the computational result showing the high potential of free energy calculations as a tool in drug development.  相似文献   

18.
Neutrophil elastase is thought to contribute to the lung pathology in patients with cystic fibrosis (CF). Therefore, intrapulmonary application of elastase inhibitors might be beneficial for these patients. Inactivation of such inhibitors by bacterial proteinases, however, is an important consideration in this therapy. We studied the effects of Staphylococcus aureus proteinase (STAP) and Pseudomonas aeruginosa elastase (PsE) on native (alpha 1-AT) and recombinant (rAAT) alpha 1-antitrypsin, recombinant secretory leukocyte proteinase inhibitor (rSLPI) and the leech inhibitor eglin C. All inhibitors were inactivated by these bacterial proteinases showing pronounced differences in their susceptibilities to proteolytic cleavage. Comparing the turnover rate (mol of inhibitor inactivated by one mol bacterial proteinase/min), rAAT and alpha 1-AT were approximately 20,000-fold more susceptible to STAP than rSLPI and 50,000-fold more susceptible than eglin C. Pseudomonas aeruginosa elastase inactivated all inhibitors more rapidly than STAP. rAAT and alpha 1-AT were 13-fold and 17,000-fold more susceptible than rSLPI and eglin C, respectively. Incubation of the rAAT-elastase complex with equimolar amounts of STAP did not result in release of elastase activity. Upon simultaneous addition of STAP and leukocyte elastase to rAAT, there was undisturbed elastase inhibition indicating that complex formation with elastase proceeded at a faster rate than inactivation of rAAT by the bacterial proteinase. From these results of inactivation in vitro and considering the immunogenic potential of the inhibitors studied here, we conclude that rSLPI may be the appropriate choice for anti-elastase therapy in CF.  相似文献   

19.
Blood sucking animals are a rich source of proteinase inhibitors mainly those that interfere in their host hemostatic systems. The tick Rhipicephalus sanguineus is an ectoparasite of dogs and other animals. The aims of this work were the purification and characterization of serine proteinase inhibitors present in R. sanguineus larvae (RsTI). The inhibitors (RsTI) were isolated by affinity chromatography on trypsin-Sepharose and ion exchange chromatographies in Resource Q and Mono S columns. These RsTIs were separated in around 12 different protein peaks, when they showed molecular masses between 8 and 18 kDa, by SDS-PAGE. Purified RsTIs presented differences in the specificity for different serine proteinases. RsTIQ2 was, better inhibitor than RsTIQ7 and RsTIS5 for neutrophil elastase, plasmin, and HuPK with dissociation constants (K(i)) of 1.3, 3.2, and 22 nM, respectively. Other inhibitors such as RsTIQ7, RsTIS3, and RsTIS5 also affected neutrophil elastase and plasmin with K(i) in the nM range. The RsTIQ2, RsTIQ7, and RsTIS5 amino acid sequence data allowed classifying them as members of the Kunitz-type serine proteinase inhibitor family, even though the RsTI role is still unknown. Our present results showed that serine proteinase inhibitors from R. sanguineus are similar to inhibitors from Boophilus microplus other hard tick species, suggesting a similar role of these inhibitors in hard tick species and also as a potential tool to generate or improve vaccine against different ectoparasites with an unique antigen.  相似文献   

20.
Pathogenesis of chronic inflammatory diseases is associated with excessive elastase release through neutrophil degranulation. In the present study, inhibition of human neutrophil degranulation by four flavonoids (myricetin, quercetin, kaempferol, galangin) was evaluated by using released elastase as a biomarker. Inhibitory potency was observed in the following order: quercetin > myricetin > kaempferol = galangin. Quercetin, the most potent inhibitor of elastase release also had a weak inhibitory effect on the enzyme catalytic activity. Furthermore, the observed effects were highly dependent on the presence of a catechol group at the flavonoid B-ring. The results of the present study suggest that quercetin may be a promising therapeutic agent in the treatment of neutrophil-dependent inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号