首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progestagens are widely used to synchronise oestrous in sheep but the effects on follicular dynamics are not clear. We tested the hypothesis that when luteolysis occurs early during progestagen synchronisation prolonged growth of the ovulatory follicle will occur. Cyclic ewe lambs (40.0+/-0.3 kg) were divided into three groups: eight ewes (Long group) received a progestagen sponge (60 mg medroxyprogesterone acetate) from Days 5 to 19 after oestrous and eight ewes (Short group) received a progestagen sponge on Day 5 which was replaced on Day 10 and again on Day 15, and removed on Day 19 after oestrous. On Days 6 and 7, ewes in both groups received prostaglandin. A third group (n=5, Control) did not receive any treatment. The growth and development of follicles > or =2 mm in diameter were characterised using daily transrectal ultrasonography. On Day 18, blood samples were collected every 12 min for 8 h from five ewes in the Long and Short groups. Data were analysed by ANOVA. The maximum diameter and age (emergence to ovulation) of the ovulatory follicle was greater (P<0.01) in ewes in the Long group (7. 4+/-0.2 mm and 12.1+/-0.6 days) than in ewes in the Short group (6. 3+/-0.2 mm and 5.1+/-0.5 days) and Control group (6.3+/-0.4 mm and 6. 8+/-0.6 days). On Day 18 of the cycle, LH pulse frequency and oestradiol concentrations were greater (P<0.05) in ewes in the Long group (3.2+/-1.1 pulse per 8 h and 1.15+/-0.09 pg ml(-1)) than the Short group (0.8+/-0.4 pulses per 8 h and 0.54+/-0.08 pg ml(-1)).We suggest that the negative feedback efficacy of a long-term progestagen sponge decreased with time and led to an increase in LH pulse frequency and prolonged growth of the ovulatory follicle. We conclude that, in the absence of luteal progesterone, synchronisation with a single progestagen sponge for 14 days resulted in higher LH pulse frequency and ovulation of a persistent follicle with a larger maximum diameter, compared with controls.  相似文献   

2.
When ovulation is induced with gonadotrophin-releasing hormone (GnRH) in anoestrous ewes, a proportion of animals fail to form normal (full-lifespan) corpora lutea (CL). Progesterone treatment before GnRH prevents luteal inadequacy. It remains uncertain whether a similar effect, achieved with medroxyprogesterone acetate (MAP) from intravaginal sponges, is mediated by influences on growing ovarian follicles and/or secretion of gonadotrophic hormones, before and after GnRH treatment. Two experiments were performed, on 13 and 11 anoestrous Western white-faced ewes, respectively. Seven and six ewes, respectively, received MAP-containing sponges (60 mg) for 14 days; the remaining ewes served as untreated controls. To test the effect of timing of GnRH administration after pre-treatment with MAP-releasing sponges, GnRH injections (250 ng every 2h for 24h followed by a bolus injection of 125 microg of GnRH i.v.) were given either immediately (Experiment 1) or 24h after sponge removal in the treated ewes (Experiment 2). Ovarian follicular dynamics (follicles reaching >or=5mm in size) and development of luteal structures were monitored using transrectal ultrasonography. In Experiment 1, the mean ovulation rate (0.7+/-0.3 and 1.0+/-0.4) and proportion of ovulating ewes (57 and 67%, respectively) did not vary (P>0.05) between MAP-treated and control ewes. Normal (full-lifespan) CL were detected in 29% of treated and 67% of control ewes (P>0.05). In Experiment 2, the mean ovulation rate (2.3+/-0.2 and 1.2+/-0.6; P<0.05) and percentage of ewes with normal (full-lifespan) CL (100 and 40%, respectively; P<0.10) were greater in the treated compared to control ewes. In Experiment 1, the mean peak concentration of the GnRH-induced LH surge was lower (P<0.05) in MAP-treated than in control ewes. There were no significant differences between MAP-treated and control ewes in the characteristics of follicular waves, mean daily serum FSH concentrations, and secretory parameters of LH/FSH, based on intensive blood sampling conducted 1 day before sponging and 1 day before sponge removal. It is concluded that treatment with MAP has no effect on the tonic secretion of LH/FSH or follicular wave development in anoestrous ewes. However, the GnRH-stimulated LH discharge was attenuated in the ewes that received MAP-impregnated sponges for 14 days and were treated with GnRH immediately after sponge withdrawal. Ovulatory response and CL formation were increased when GnRH was administered 24 h after sponge removal.  相似文献   

3.
Variability in superovulatory response to FSH stimulation is common to most mammals and imposes practical problems for assisted reproduction. In sheep, we have studied if this response is related to the ovarian follicular population and activity before the stimulation. During the breeding season, 30 ewes were treated with 40 mg FGA sponges for 14 days and 125 microg cloprostenol injection on Day 12, considering Day 0 as the day of progestagen insertion. Superovulatory response was induced with two different FSH regimes using the same total dose (8.8 mg), administered twice daily from 60 h before to 24 h after progestagen withdrawal. At the first FSH injection, all follicles > or = 2 mm were observed by transrectal ultrasonography and plasma FSH and inhibin A levels were determined. The number of corpora lutea and the number of and viability of recovered embryos in response to the treatment were determined on Day 7 after sponge withdrawal. No significant differences were found between treatments. The total mean number of corpora lutea (11.5 +/- 1.2) and recovered embryos (7.9 +/- 1.1) were positively correlated (P < 0.05 and <0.01, respectively) with the number of small antral follicles (2-3 mm: 9.2 +/- 0.7) and inhibin A concentration (240 +/- 18 pg/ml; P < 0.05 for corpora lutea and P < 0.005 for recovered embryos) observed at the onset of the superovulatory treatment, which was also positively correlated with the number of viable embryos (5.8 +/- 0.9, P < 0.005). In 18 ewes with follicles > or = 6 mm prior to FSH treatment, the ovulation rate was unaffected but the number of embryos (6.1 +/- 0.9 versus 11.6 +/- 2; P < 0.05) and their viability (4.5 +/- 0.8 versus 8.5 +/- 2; P < 0.05) was reduced. The lower number of embryos produced when a large follicle is present suggest that a proportion of the smaller follicles are in early stages of atresia and the developmental competence of their oocyte is compromised.  相似文献   

4.
The main objective of this study was to compare the effect of the presence of large follicles at the start of FSH treatment on the superovulatory response in ewes in the breeding and nonbreeding seasons. A second objective was to verify the effect on the superovulatory response of the presence of a corpus luteum at the start of the FSH treatment during the breeding season. Fifteen ewes in breeding season (October) and 14 in nonbreeding season (May-June) were treated with 40 mg FGA sponges (Chronogest) for 14 days, together with a single dose of 125 microg cloprostenol on Day 12, considering Day 0 as day of progestagen insertion. Superovulatory treatments consisted of eight decreasing doses (1.5 ml x 3, 1.25 ml x 2 and 1 ml x 3) of Ovagen twice daily from 60 h before to 24h after sponge removal. Ovarian structures were assessed by transrectal ultrasonography using a 7.5 MHz linear array probe. Luteal activity at progestagen insertion (Day 0) and presence of corpus luteum and of large follicles at first FSH dose (Day 12) were determined. There were no significant differences between the breeding season and nonbreeding season for ovulation rate (11.6+/-1.4 versus 11.6+/-1.3), number of recovered embryos (8.0+/-1.1 versus 9.6+/-1.3) or number of viable embryos (7.2+/-1.1 versus 5.8+/-1.2). During the breeding season, there were fewer recovered embryos in ewes with a large follicle (> or =6mm) at first FSH dose (6.9+/-1.1 versus 12.3+/-1.8, P<0.05) and fewer viable embryos (5.0+/-1.2 versus 10.5+/-0.5, P<0.05) than in ewes without such a follicle. During the nonbreeding season, however, there were no significant differences between ewes with or without a large follicle for either recovered (9.0+/-2.5 versus 11.3+/-1.2) or viable embryos (6.3+/-2.3 versus 8.1+/-1.2). Analysis of seasonal differences in ewes with a large follicle showed a lower number of recovered embryos in the breeding season (P<0.05) due to a lower recovery rate (65.7% versus 92.3%, P<0.05), since mean number of corpora lutea in response to the FSH treatment was similar (10.9+/-1.3 versus 10.0+/-2.5). These results indicate that, in sheep, the inhibitory effects of large follicles during the nonbreeding season are not as obvious as during the breeding season.  相似文献   

5.
Two experiments were conducted to examine the effects of ram exposure during the breeding season, in combination with progestagen treatment on estrus synchronization, fertility the LH surge and ovulation in ewes. Experiment 1 was subdivided into experiments 1a and 1b. In all experiments cross-bred ewes were treated with an intravaginal sponge for 12-14 days and three days before sponge withdrawal ewes were divided into control (no further treatment; n=191, 103 and 50 for experiments 1a, 1b and 2, respectively) or ram exposed (three mature rams per 50 ewes were introduced; +Ram; n=187, 99 and 49 for experiments 1a, 1b and 2, respectively). At sponge withdrawal ewes in Experiments 1a and 2 received 500 IU eCG and rams were removed from all the +Ram groups. In Experiments 1a and 1b, raddled, entire rams were introduced to ewes 48 h after sponge withdrawal. The timing of mating was recorded and ewes were maintained until lambing. In Experiment 2, estrus behavior was determined every 4 h and the time of the LH surge and ovulation were determined from a subset of 10 ewes per group. In Experiment 1a, less +Ram ewes were bred by 48 h after ram introduction (control 98% versus +Ram 89%, P<0.001) and in Experiments 1a and 1b 14% fewer (P<0.05) of the ewes bred in the first 3 h after ram introduction lambed to that service. In Experiment 1a, ram exposed ewes had a lower litter size than control ewes (1.93+/-0.06 versus 1.70+/-0.06 lambs per ewe; P<0.05). In Experiment 2, rams advanced (P<0.05) estrus, the LH surge and ovulation by 2-6 h compared with control ewes. We speculate that exposure of ewes to rams increased LH secretion and that this in turn increased follicle development and the production of oestradiol that led to a more rapid onset of estrus, the LH surge and ovulation compared to control ewes. Unexpectedly, ewes that were bred had lower fertility in the +Ram groups than control groups.  相似文献   

6.
The main objective of this study was to investigate the effectiveness of certain progestagen-gonadotrophin treatments on synchronization of estrus in sheep. In Experiment I, 30 Chios ewes were treated at the beginning of the breeding season with medroxyprogesterone acetate (MAP) intravaginal sponges for 12 days and a single i.m. treatment of either FSH (Group 1,10 IU, n = 8; Group 2, 5 IU, n = 8; Group 3, 2.5 IU, n = 8) or eCG (Group 4, 400 IU, n = 6) at the time of sponge removal. Ten days after sponge removal laparotomy was performed to record ovarian response. Clinical estrus was observed in more (though not at a significant level) FSH treated than eCG treated sheep (62.5% versus 33.3%). Administration of 400 IU eCG resulted in the highest mean number of CL perewe ovulating (2.8 +/- 0.2), with administration of 10 IU FSH producing the next best results (2.1 +/- 0.3). Statistically significant differences in the mean number of CL per ewe ovulating were found only between ewes in Group 3 (1.7 +/- 0.4) and Group 4 (2.8 +/- 0.2) (P < 0.05). In Experiment II, 53 Chios and 30 Berrichon ewes were treated during the mid-breeding season with MAP intravaginal sponges for 12 days and a single i.m. treatment of either 10 IU FSH (27 Chios and 16 Berrichon ewes) or 400 IU eCG (26 Chios and 14 Berrichon ewes), at the time of sponge removal. Ewes that were in estrus on Days 2-4 and 19-23 after sponge removal were mated to fertile rams. No significant differences were recorded between treatment or breed groups in the proportions of ewes observed in estrus after treatment. In the Berrichon breed, FSH administration resulted in higher lambing rates (93.8% versus 57.1%, P < 0.05) and higher mean number of lambs born per ewe exposed to rams (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05) than that of eCG. After treatment with eCG, the mean number of lambs born per ewe exposed to rams was higher in the Chios than the Berrichon breed (1.4 +/- 0.2 versus 0.8 +/- 0.2, P < 0.05). After treatment with FSH, the lambing rate was higher in the Berrichon than the Chios breed (93.8% versus 63.0%, P < 0.05). In conclusion, a single FSH treatment (5 or 10 IU) at the end of progestagen treatment appears to be more effective than eCG for the induction of synchronized estrus in sheep at the beginning of the breeding season, with no cases of abnormal ovarian response observed. During the mid-breeding season FSH (10 IU) appears to be equally as effective as eCG (400 IU) in respect of lambing rate and mean number of lambs born per ewe.  相似文献   

7.
This study investigated the effect of recombinant bovine GH (rGH) on follicle development and LH secretion patterns in ewes. In Experiment 1, 20 ewes (n=10/group) synchronized with progestagen sponges on Day 0 received either a 7 d period of rGH treatment starting on Day 4, or acted as controls. On Day 11, all ewes were unilaterally ovariectomized. Follicles in the excised ovary were characterized on the basis of size, health status and rate of granulosa cell proliferation. Circulating levels of LH, GH, IGF-1 and insulin were monitored. Compared to controls, rGH treatment significantly increased the number of healthy follicles >2.0 mm, reduced the number of 0.25 to 0.5-mm follicles and reduced the number of 0.8 to 2.0-mm early atretic follicles. GH treatment also reduced the mitotic index of 0.25 to 0.5-mm follicles. Recombinant GH treatment had no effect on LH secretion patterns, but plasma GH, IGF-1 and insulin levels were increased in rGH-treated ewes. Because rGH treatment may have had an anti-atresia effect in Experiment 1, the hypothesis for Experiment 2 was that rGH treatment could maintain follicle development beyond 2.5-mm diameter in bovine follicular fluid (bFF)-treated ewes. Forty ewes (n=10/group) were synchronized with progestagen sponges. Starting 5 d after sponge insertion, ewes were treated for 6 d with rGH, bFF, rGH plus bFF, or acted as controls. On Day 12, ewes were sacrificed, and follicles were dissected out of their ovaries and assessed on the basis of size. FSH concentrations were assessed on Days 7, 9 and 11. GH treatment alone significantly increased the number of 2.5 to 4.0-mm follicles compared to controls, whereas no follicles larger than 2.5 mm were present in bFF-treated ewes. In rGH plus bFF-treated ewes, the number of 2.5 to 4.0-mm follicles was similar to controls, but there were less follicles >4.0 mm. GH treatment had no effect on FSH levels, whereas bFF treatment significantly reduced FSH levels. These results expand previous findings that rGH treatment of ewes alters follicle development, but do not suggest that rGH treatment is likely to be of benefit in superovulatory protocols. Furthermore, the data indicate that rGH has an anti-atretic action that is unlikely to be mediated via gonadotropins.  相似文献   

8.
The objectives of this study were to determine the effects of buserelin or saline treatment on ovarian function (Experiment 1), plasma PGFM concentrations and oxytocin stimulated prostaglandin F(2alpha) (PGF(2alpha)) release (Experiment 2) in ewe lambs and ewes. Welsh Halfbred ewes (n=26) and ewe lambs (n=24) were mated to vasectomised rams at synchronised oestrus and on Day 12 post-mating each animal was injected intramuscularly either normal saline or 4 microg buserelin. In Experiment 1, plasma progesterone and oestradiol concentrations were determined in samples collected by jugular venepuncture 1h before and at 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment (n=7 per treatment group). Progesterone concentrations increased (P<0.05) from 2 to 8h after buserelin treatment and returned to basal levels after 72 h, whereas oestradiol concentrations were maximal at 2h post-treatment and returned to basal levels after 24h (P<0.05). Oestradiol concentrations were lower (P<0.05) in buserelin-treated animals than controls at 72 h post-treatment. Basal and post-treatment progesterone concentrations were greater (P<0.05) in ewes than in ewe lambs but oestradiol levels were similar for both age groups. Ovulation rate, determined by laparoscopy on Day 14, was similar for both age groups (ewes 1.1; ewe lambs 1.0). Buserelin treatment induced accessory corpora lutea in ewes (4/7; 57%) but not in ewe lambs (0/7; 0%). In the Experiment 2, plasma PGFM concentrations were determined in samples collected at 20-min intervals for 6h on Day 14 and at 20-min intervals for 1h before and at 10-min intervals for 1h and then at 20-min intervals for a further 3h period after an intravenous injection of oxytocin (1IU/kg body weight) on Day 15 post-oestrus. In this experiment there were five ewe lambs and six ewes per treatment group. There was no effect of buserelin treatment or age on basal PGFM concentrations on either Day 14 or 15. Although peak PGFM concentrations tended to be lower in buserelin-treated animals, the difference was not significant (P>0.05). However, peak duration following oxytocin challenge on Day 15 post-mating was shorter (P<0.05) in control ewes compared with control ewe lambs. In conclusion, buserelin treatment given on Day 12 post-oestrus enhances luteal function more in ewes than ewe lambs and after a transitory increase, reduces oestradiol concentrations in both ewes and ewe lambs. However, buserelin treatment does not significantly attenuate the luteolytic signal.  相似文献   

9.
The objectives of this study were to determine the effect of GnRH analogue (buserelin) or human chorionic gonadotrophin (hCG, Chorulon) treatment on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. After oestrus synchronization with progestagen sponges and eCG, all the animals were mated with fertile rams. Both ewes and ewe lambs (20 per treatment group) were given either normal saline or 4 microg GnRH or 200 IU hCG on Day 12 post-mating. Pre- and post-treatment plasma hormone concentrations were determined in seven pregnant animals per treatment group in samples collected 1h before and 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment. Overall mean progesterone concentrations were higher (P<0.001) in ewes as compared with ewe lambs in saline-treated controls. GnRH or hCG treatment increased (P<0.001) mean plasma progesterone concentrations in both age groups, however, post-treatment concentrations were significantly (P<0.05) higher in ewes than in ewe lambs. Oestradiol concentrations were similar in the two control groups. In ewes, but not in ewe lambs, both GnRH and hCG treatments significantly (P<0.05) increased the mean oestradiol concentrations above pre-treatment levels. Moreover, post-treatment oestradiol concentrations in GnRH- and hCG-treated animals were significantly (P<0.05) higher than those in the saline-treated controls. LH release in response to GnRH treatment was greater (P<0.05) in ewes than in ewe lambs, whereas FSH release in ewes was less (P<0.05) than that of ewe lambs. The effects of GnRH or hCG on conceptus growth and placentation was determined at slaughter on Day 25. In ewes, GnRH treatment increased (P<0.05) luteal weight, amniotic sac width and length, and crown-rump length compared with controls, but had no effect on these parameters in ewe lambs. In ewes, hCG treatment also enhanced (P<0.05) luteal weight, amniotic sac width and length, crown-rump length, embryo weight and number of placentomes as compared with controls. In ewe lambs, there was no difference (P<0.05) between hCG and control groups in luteal weight, embryo weight and amniotic sac width but crown-rump length, amniotic sac length and the number of placentomes forming the placenta were greater (P<0.05). In conclusion, GnRH or hCG treatment on Day 12 of pregnancy can increase ovarian function, conceptus growth and placental attachment in ewes. However, these treatments were less effective in ewe lambs.  相似文献   

10.
In a previous study in our laboratory, treatment of non-prolific Western White Face (WWF) ewes with PGF(2 alpha) and intravaginal sponges containing medroxyprogesterone acetate (MAP) on approximately Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval) resulted in ovulations during the subsequent 6 days when MAP sponges were in place. Two experiments were performed on WWF ewes during anestrus to allow us to independently examine if such ovulations were due to the direct effects of PGF(2 alpha) on the ovary or to the effects of a rapid decrease in serum concentrations of progesterone at PGF(2 alpha)-induced luteolysis. Experiment 1: ewes fitted with MAP sponges for 6 days (n = 12) were injected with PGF(2 alpha) (n = 6; 15 mg im), or saline (n = 6) on the day of sponge insertion. Experiment 2: ewes received progesterone-releasing subcutaneous implants (n = 6) or empty implants (n = 5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, which remained in place for 6 days. Ewes from both experiments underwent ovarian ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 days after sponge insertion. Additional blood samples were collected every 4 h during sponge treatment. Experiment 1: 4-6 (67%) PGF(2 alpha)-treated ewes ovulated approximately 1.5 days after PGF(2 alpha) injection; these ovulations were not preceded by estrus or a preovulatory surge release of LH, and resulted in transient corpora hemorrhagica (CH). The growth phase was longer (P < 0.05) and the growth rate slower (P < 0.05) in ovulating versus non-ovulating follicles in PGF(2 alpha)-treated ewes. Experiment 2: in ewes given progesterone implants, serum progesterone concentrations reached a peak (1.7 2 ng/mL; P < 0.001) on the day of implant removal and decreased to basal concentrations (<0.17 ng/mL; P < 0.001) within 24 h of implant removal. No ovulations occurred in either the treated or the control ewes. We concluded that ovulations occurring after PGF(2 alpha) injection, in the presence of a MAP sponge, could be due to a direct effect of PGF(2 alpha) at the ovarian level, rather than a sudden decline in circulating progesterone concentrations.  相似文献   

11.
The success of estrus synchronization programs using progestagen sponges, particularly for fixed-time AI, varies considerably. In view of the recent evidence in cattle that exogenous progestins alter follicular dynamics, it may be that the stage of the estrous cycle at which the synchronization protocol is begun affects the synchrony of ovulation. The goal of this study was to evaluate the effect of medroxyprogesterone acetate (MAP) intravaginal sponges on follicular dynamics, luteal function and interval to ovulation when inserted at 3 stages of the estrous cycle. Sponges were inserted for 12 d beginning on either Day 0, 6 or 12 (n = 5) following ovulation. Ovarian activity was monitored using real-time ultrasound imaging during the treatment and the post-treatment estrous cycles. Information from the post-treatment cycle was used as a baseline to compare with the treatment cycle. Most ewes (79%) in the post-treatment cycle exhibited 3 follicular waves in an estrous cycle of 16 d, with the second wave follicles having smaller diameter (P < 0.001). Treatment with MAP increased the number of follicular waves from 3 to 4 or 5 when sponges were inserted on Days 6 and 12, respectively. Size of the largest follicle was smaller (P > 0.01) in waves in the early and middle of the 12-d MAP treatment period when compared with the last 4 days. This effect was most pronounced when endogenous progesterone concentrations were elevated concurrently with the presence of the sponge. Persistence of the ovulatory follicle was increased (P < 0.001) when sponges were inserted on Day 12, the only treatment where these follicles were under the influence of MAP in the absence of functional corpora lutea. Follicles were regressing at sponge removal in the Day 6 treatment, which resulted in a delay in emergence of ovulatory follicles, the LH surge and ovulation (P < 0.08) in relation to Day 0 and Day 12. Treatment with MAP sponges does not adequately synchronize estrus and ovulation among cyclic ewes due to the different follicular patterns that result depending on the stage of cycle at the time of sponge insertion.  相似文献   

12.
Multiple ovulation and embryo transfer (MOET) has the potential to increase the rates of genetic improvement in sheep. However, better realization of this potential requires a higher yield of transferable embryos. Thus we investigated some factors that may contribute to high embryo yield and quality under field conditions, as part of an ongoing MOET program. Comparison of the effects of 2 breeding systems (natural service plus laparoscopic intrauterine AI vs natural service only) on embryo yield and quality indicated that while AI did not affect embryo recovery, it significantly (P < 0.05) improved fertilization rate and embryo quality, and increased (P < 0.05) embryo survival rate after transfer to recipients. Two flushing procedures (the original semi-laparoscopic and a modified version) were compared for effects on embryo recovery. The modifications made to the original collection method increased (P < 0.001) embryo recovery from 69.0 +/- 2.4 to 83.2 +/- 0.6%. The effects of the progestagen priming dosage during superovulatory treatment and ewe age on MOET outcome were also investigated. Donor ewes primed with 30-mg progestagen sponges came into estrus 1.9 h earlier (P < 0.05) than those primed with 45-mg sponges, but there was no difference in ovulation rate or embryo recovery, or in embryo survival after transfer between the 2 regimens. However, Chi-square analysis indicated a significant benefit in favor of the higher progesterone dose on both fertilization (P < 0.01) and embryo quality (P < 0.001). Age of donor ewe did not significantly affect the timing of estrus, fertilization rate or embryo survival after transfer. While adult ewes had higher (P < 0.05) ovulation rates and embryo yields, shearling ewes produced a much higher proportion of Grade 1 embryos (P < 0.05).  相似文献   

13.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

14.
The present study was developed to assess possible effects on ovulatory response and embryo yields arising from the presence of a corpus luteum (CL) at the time of initiation of the progestagen treatment used in superovulatory protocols in sheep. In breeding season, estrus was synchronized in 25 Manchega ewes using 40 mg FGA sponges for 14 days, together with a single dose of 125 microg of cloprostenol on Day 12, with Day 0 as day of progestagen insertion. Superovulatory treatment consisted of eight decreasing doses (1.5 x 3 ml, 1.25 x 2 ml, and 1 x 3 ml) of Ovagen twice daily from 60 h before to 24 h after sponge removal. The presence or absence of corpora lutea was assessed by transrectal ultrasonography at progestagen insertion and at first FSH dose. Number and size of all follicles > or = 2 mm were also evaluated at first FSH dose. The number of corpora lutea and the number and viability of recovered embryos in response to the treatment were evaluated 7 days after sponge removal. No significant effect on ovarian response of the presence of a CL at sponge insertion in 21 of the 25 ewes (84%) was detected. However, ewes with a CL at first FSH dose (16 ewes, 64%) yielded a higher number of transferable embryos (7.2 +/- 1.4 versus 2.7 +/- 0.7, P < 0.05), since the embryo degeneration rate was increased in sheep without a CL (42.5% versus 12.7%, P < 0.01). Analysis of possible effects derived from the presence of a large presumptively dominant follicle (> or = 6 mm) at first FSH dose showed that both recovery and viability rates were lowest (P < 0.05) in ewes bearing a large follicle in the absence of a CL (40.5 and 50.6%, respectively), and highest in ewes that did not show a large follicle but in which a CL was present (73.9 and 85.2%). The final number of transferable embryos was very different between groups (10.2 versus 1.8, P < 0.01). These results indicate that the number and quality of embryos obtained from superovulated ewes is affected by the presence of a CL prior to the first FSH dose (i.e. by the stage of the estrous cycle at progestagen insertion) and also by an interaction with suppressive effects from large dominant follicles. This finding suggests the existence of some effects on follicular population prior to the FSH treatment that may compromise follicle and oocyte developmental competence. It seems reasonable to hypothesize that superovulatory yields would be increased by beginning the treatment during the early-luteal phase of the estrous cycle, allowing for the presence of a CL along with the progestagen treatment.  相似文献   

15.
Treatment of ewes with a 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) inhibitor (Epostane) resulted in a significant increase in both ovulation rate and in the mean number of lambs per ewe lambing. The progestagen sponge plus 3 beta-HSD inhibitor treatment also caused a significant increase in oestrous cycle duration of approximately 1.5 days. Treatment of ewes with the 3 beta-HSD inhibitor caused a significant decrease in peripheral progesterone concentrations, which were reduced even further when 3 beta-HSD inhibitor treatment was given to ewes after insertion of a progestagen sponge. However, mean oestradiol concentrations were significantly higher in the two treatment groups, both at the end of the luteal phase and during the follicular phase of the oestrous cycle. These results demonstrate that ovulation rate and the production of lambs per ewe lambing can be significantly increased by 3 beta-HSD inhibitor treatment.  相似文献   

16.
The repeatability of superovulatory response and embryo recovery in sheep   总被引:9,自引:0,他引:9  
Over an 8-year period, a total of 328 Scottish Blackface donor ewes were involved in a MOET program. They were synchronized with fluorogestone acetate sponges and superovulated with ovine FSH. After the onset of estrus, ewes were hand-mated and laparoscopic artificial insemination was performed with fresh semen 44-46 h after sponge removal. Embryos were recovered semi-laparoscopically on either Day 5 or Day 6 after insemination. Of the 328 donor ewes used, 222 ewes were supervoulated only once, while the remaining ewes were superovulated either twice (73 ewes), 3 times (26 ewes) or 4 times (7 ewes) at yearly intervals to generate a maximum of 474 records for subsequent analysis. There was no significant change in either mean ovulation rate or the mean number of embryos recovered per donor ewe at successive treatments. However, significant (P < 0.05 at least) effects of both year and donor ewe age existed for superovulatory response and number of embryos recovered, though only the effect of year was significant (P < 0.001) for percentage embryo recovery. Repeatability was significant (P < 0.05 at least) for both superovulatory response (r = 0.55, s.e. 0.055) and number of embryos recovered (r = 0.38, SE 0.074), but not for percentage embryo recovery (r = 0.04, SE 0.102).  相似文献   

17.
Follicular recruitment and luteal response to superovulatory treatment initiated relative to the status of the first wave of the ovine estrous cycle (Wave 1) were studied. All ewes (n = 25) received an intravaginal progestagen sponge to synchronize estrous cycles, and ewes were monitored daily by transrectal ultrasonography. Multiple-dose FSH treatment (total dose = 100 mg NIH-FSH-P1) was initiated on the day of ovulation (Day 0 group) in 16 ewes. In the remaining 9 ewes, FSH treatment was started 3 d after emergence of the largest follicle of Wave 1 (Day 3 group). Ewes received PGF(2alpha) with the last 2 FSH treatments to induce luteolysis. Daily blood samples were taken to determine progesterone profiles and to evaluate the luteal response subsequent to superovulation. The ovulation rate was determined by ultrasonography and correlated with direct observation of the ovaries during laparotomy 5 to 6 d after superovulatory estrus when the uterus was flushed to collect embryos. Results confirmed that follicular recruitment was suppressed by the presence of a large, growing follicle. In the Day 0 and Day 3 groups, respectively, mean numbers (+/- SEM) of large follicles (>/= 4 mm) recruited were 6.4 +/- 0.6 and 2.7 +/- 0.7 (P < 0.01) at 48 h after the onset of treatment, and 6.7 +/- 0.5 and 5.1 +/- 0.6 (P = 0.08) at 72 h after the onset of treatment. Ovulation rates were 5.6 +/- 0.8 and 3.3 +/- 0.8 in the respective groups (P < 0.05). The number of transferable embryos was 1.8 +/- 0.5 and 0.3 +/- 0.2 in the respective groups (P < 0.05). Short luteal phases (相似文献   

18.
Two experiments were designed to evaluate the possibility of simplifying superovulatory treatments in Corriedale ewes with use of ovine FSH (oFSH). Ewes received intravaginal progestogen sponges for 14 days. In Experiment 1, several simplified schedules were tested. Ewes were treated with 176 NIH-FSH-S1 units' oFSH given as a single injection in saline, along with 500 IU eCG 48 h before sponge removal (Group A1), in four equal doses (B1), or given as a single injection in a polyvinylpyrrolidone vehicle (C1) 24 h before sponge removal. In Experiment 2, the simplified protocol that exhibited the most desirable results in Experiment 1 (A2) was compared with the same protocol, but using less oFSH (132 units) (B2) and with the most conventional protocol (176 units of oFSH in eight decreasing doses; C2). Estrus was detected and ewes were naturally mated. The ovarian response and embryo production were assessed on Day 6 after estrus. LH was measured at 6h intervals from pessary withdrawal. The onset of estrus and the pre-ovulatory LH surge were advanced (P<0.05) in ewes treated with FSH and eCG. In Experiment 1, protocol A1 produced a greater percentage of superovulated ewes compared to C1 (100.0 compared with 58.3%; P<0.05), increased ovulation rate (13.8 corpora lutea compared with 6.2 and 4.7 for B1 and C1, respectively; P<0.05), and tended to increase the number of transferable embryos compared to B1 (P=0.08). In Experiment 2, percentages of superovulated ewes and ovulation rates were similar among groups; however, Group A2 tended to have more large follicles (P=0.07) than C2. The number of transferable embryos was similar among the three treatments. In conclusion, the reduced-dose oFSH given once along with eCG is the most appropriate superovulatory treatment because it combines simplicity and a lesser dose of gonadotropin, which also implies a reduction in cost, without reducing embryo production.  相似文献   

19.
Ovarian follicular development was characterized in 24 Spanish Merino ewes to study effects of the follicular status and the FSH commercial product used on follicular growth and subsequent superovulatory response. Estrus was synchronized using 40 mg fluorogestone acetate sponges. The superovulatory treatment consisted in 2 daily i.m. injections of FSH from 48 h before to 12 h after sponge removal. Sheep were assigned randomly to 2 groups treated with 6 decreasing doses (4, 4, 3, 3, 2, 2 mg) of FSH-P or with 6 doses of 1.25 mL of OVAGEN. Growth and regression of all follicles > or = 2 mm were observed by transrectal ultrasonography, and recorded daily from Day 6 before sponge insertion to the first FSH injection, and then twice daily until estrus was detected with vasectomized rams. Differences were detected in follicular development from the first FSH injection to detection of estrus (-48 to 36 h from sponge removal) between groups. Administration of FSH-P increased the appearance of new follicles with respect to OVAGEN (6.3 +/- 0.7 vs 4.8 +/- 0.4; P < 0.05), and the mean number of medium (4 to 5 mm) follicles (8.9 +/- 1.2 vs 6.6 +/- 0.9; P < 0.05). However, the mean number of follicles that regressed in size after sponge removal (5.9 +/- 0.4 vs 3.3 +/- 0.4) and the number of preovulatory sized follicles that did not ovulate (60 vs 42.4%) were also higher in FSH-P treated ewes (P < 0.05). So, finally, there were no differences in ovulation rate, as determined by laparoscopy on Day 7 after sponge removal, between ewes treated with FSH-P or OVAGEN (6.3 +/- 1.9 vs 7.0 +/- 1.7 CL). In all the ewes, the ovulatory response was related (P < 0.05) both to the number of small follicles (2 to 3 mm in diameter) present in the ovaries at the start of treatment with exogenous FSH and to the number of follicles that reached > or = 4 mm in size at estrus, despite differences in the pattern of follicular development when using different commercial products.  相似文献   

20.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号