首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetaldehyde, a major metabolite of ethanol, reacts with dG residues in DNA, resulting in the formation of the N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG) adduct. This adduct has been detected in lymphocyte DNA of alcohol abusers. To explore the miscoding property of the N(2)-Et-dG DNA adduct, phosphoramidite chemical synthesis was used to prepare site-specifically modified oligodeoxynucleotides containing a single N(2)-Et-dG. These N(2)-Et-dG-modified oligodeoxynucleotides were used as templates for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo(-)) Klenow fragment of Escherichia coli DNA polymerase I. The primer extension was retarded one base prior to the N(2)-Et-dG lesion and opposite the lesion; however, when the enzyme was incubated for a longer time or with increased amounts of this enzyme, full extension occurred. Quantitative analysis of the fully extended products showed the preferential incorporation of dGMP and dCMP opposite the N(2)-Et-dG lesion, accompanied by a small amounts of dAMP and dTMP incorporation and one- and two-base deletions. Steady-state kinetic studies were also performed to determine the frequency of nucleotide insertion opposite the N(2)-Et-dG lesion and chain extension from the 3' terminus from the dN.N(2)-Et-dG (N is C, A, G, or T) pairs. These results indicate that the N(2)-Et-dG DNA adduct may generate G --> C transversions in living cells. Such a mutational spectrum has not been detected with other methylated dG adducts, including 8-methyl-2'-deoxyguanosine, O(6)-methyl-2'-deoxyguanosine, and N(2)-methyl-2'-deoxyguanosine. In addition, N(2)-ethyl-2'-deoxyguanosine triphosphate (N(2)-Et-dGTP) was efficiently incorporated opposite a template dC during DNA synthesis catalyzed by the exo(-) Klenow fragment. The utilization of N(2)-Et-dGTP was also determined by steady-state kinetic studies. N(2)-Et-dG DNA adducts are also formed by the incorporation of N(2)-Et-dGTP into DNA and may cause mutations, leading to the development of alcohol- and acetaldehyde-induced human cancers.  相似文献   

2.
DNA damage may alter the outcome of protein-nucleic acid interactions. The malondialdehyde-deoxyguanosine adduct, 3-(2'-deoxy-beta-d-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10-(3H)-one (M(1)dG), miscodes in vivo and in vitro. M(1)dG is an exocyclic adduct that undergoes ring-opening in duplex DNA to form the acyclic adduct, N(2)-(3-oxo-1-propenyl)-deoxyguanosine (N(2)-OPdG). These two adducts have different effects on DNA polymerase bypass and may affect other DNA processing enzymes. We employed the EcoRI restriction endonuclease as a model for the interaction of DNA binding proteins with adducted DNA substrates. The presence of M(1)dG in the EcoRI recognition sequence impaired the ability of the enzyme to cleave DNA, resulting in only 60% cleavage of the adducted strand and 75% cleavage of the complementary strand. Three adducts of similar structure to M(1)dG that are unable to ring-open were cleaved poorly, or not at all, by EcoRI. None of the adducts appeared to inactivate or sequester EcoRI. Additional studies with BssHII and PauI confirmed these results and demonstrated a positional effect of M(1)dG on cleavage efficiency. These data suggest dissimilar modes of protein-nucleic acid interactions based on differences in adduct structure. Comparison of the solution structures of DNA adducts and the crystal structure of EcoRI complexed to substrate suggest a model to explain the functional differences.  相似文献   

3.
Bypass of the configurationally stable analogue (beta-C-Fapy x dG) of the formamidopyrimidine lesion derived from 2'-deoxyguanosine oxidation (Fapy x dG) was studied in vitro and in Escherichia coli. The exonuclease deficient Klenow fragment of E. coli DNA polymerase I (Klenow exo(-)) misincorporated dA most frequently opposite beta-C-Fapy x dG, but its efficiency was <0.2% of dC insertion. Klenow exo(-) fidelity was enhanced by the enzyme's high selectivity for extending duplexes only when dC was opposite beta-C-Fapy x dG. The expectations raised by these in vitro data were realized when beta-C-Fapy x dG replication was studied in E. coli by transfecting M13mp7(L2) bacteriophage DNA containing the nucleotide analogue within the lacZ gene in 4 local sequence contexts. The bypass efficiency of beta-C-Fapy x dG varied between 45% and 70% compared to a genome containing only native nucleotides. Mutation frequencies at the site of the lesions in the originally transfected genomes were determined using the REAP assay [Delaney, J. C.; Essigmann, J. M. Methods Enzymol.2006, 408, 1]. The levels of mutations could not be distinguished between those observed when genomes containing native nucleotides were replicated, indicating that the mutagenicity of beta-C-Fapy x dG was <1%. These data and previous reports indicate that beta-C-Fapy x dG is a good model of Fapy x dG in E. coli. In addition, these results and the previous report of beta-C-Fapy x dG binding to the base excision repair protein formamidopyrimidine glycosylase suggest that this analogue could be useful as a DNA repair inhibitor.  相似文献   

4.
The environmental and endogenous mutagen acrolein reacts with cellular DNA to produce several isomeric 1,N(2)-propanodeoxyguanosine adducts. High resolution NMR spectroscopy was used to establish the structural features of the major acrolein-derived adduct, gamma-OH-1,N(2)-propano-2'-deoxyguanosine. In aqueous solution, this adduct was shown to assume a ring-closed form. In contrast, when gamma-OH-1,N(2)-propano-2'-deoxyguanosine pairs with dC at the center of an 11-mer oligodeoxynucleotide duplex, the exocyclic ring opens, enabling the modified base to participate in a standard Watson-Crick base pairing alignment. Analysis of the duplex spectra reveals a regular right-handed helical structure with all residues adopting an anti orientation around the glycosidic torsion angle and Watson-Crick alignments for all base pairs. We conclude from this study that formation of duplex DNA triggers the hydrolytic conversion of gamma-OH-1,N(2)-propano-2'-deoxyguanosine to an open chain form, a structure that facilitates pairing with dC during DNA replication and accounts for the surprising lack of mutagenicity associated with this DNA adduct.  相似文献   

5.
Oxidative DNA damage is one of the key events thought to be involved in mutation and cancer. The present study examined the accumulation of M1dG, 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-pyrimido[1,2-a]-purin-10(3H)-one, DNA adducts after single dose or 1-year exposure to polyhalogenated aromatic hydrocarbons (PHAH) in order to evaluate the potential role of oxidative DNA damage in PHAH toxicity and carcinogenicity. The effect of PHAH exposure on the number of M1dG adducts was explored initially in female mice exposed to a single dose of either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or a PHAH mixture. This study demonstrated that a single exposure to PHAH had no significant effect on the number of M1dG adducts compared to the corn oil control group. The role of M1dG adducts in polychlorinated biphenyl (PCB)-induced toxicity and carcinogenicity was further investigated in rats exposed for a year to PCB 153, PCB 126, or a mixture of the two. PCB 153, at doses up to 3000 microg/kg/day, had no significant effect on the number of M1dG adducts in liver and brain tissues from the exposed rats compared to controls. However, 1000 ng/kg/day of PCB 126 resulted in M1dG adduct accumulation in the liver. More importantly, coadministration of equal proportions of PCB 153 and PCB 126 resulted in dose-dependent increases in M1dG adduct accumulation in the liver from 300 to 1000 ng/kg/day of PCB 126 with 300-1000 microg/kg/day of PCB 153. Interestingly, the coadministration of different amounts of PCB 153 with fixed amounts of PCB 126 demonstrated more M1dG adduct accumulation with higher doses of PCB 153. These results are consistent with the results from cancer bioassays that demonstrated a synergistic effect between PCB 126 and PCB 153 on toxicity and tumor development. In summary, the results from the present study support the hypothesis that oxidative DNA damage plays a key role in toxicity and carcinogenicity following long-term PCB exposure.  相似文献   

6.
Lipid peroxidation generates a variety of reactive products that covalently modify DNA, yielding several types of adducts with nucleobases. In the present study, we characterized the modification of nucleobases during peroxidation of linoleate and found that 2'-deoxycytidine (dC) could be a major target of the modification by lipid peroxidation reactions. Upon incubation with oxidized linoleate, dC and 2'-deoxyguanosine (dG) were significantly modified among four 2'-deoxynucleosides. The major product in dG/linoleate was identical to the 2-oxo-heptyl-substituted 1,N(2)-etheno-dG that had been previously identified as a 4-oxo-2-nonenal (ONE)-dG adduct. On the basis of spectroscopic and chemical characterization, we identified the major product in dC/linoleate as the 2-oxo-heptyl-substituted 3,N(4)-etheno-dC. The same adduct was also produced upon reaction of dC with ONE, suggesting that ONE might represent the major reactive species that modifies DNA during lipid peroxidation. Indeed, this proposition was supported by the observation that ONE was far more reactive with dC and dG than other genotoxic aldehydes, such as 4-hydroxy-2-nonenal. More strikingly, we found that, in contrast to the similar reactivity of ONE toward free nucleobases (dC and dG), ONE preferentially reacted with dC residues in double-stranded DNA. These results suggest that ONE and other 4-oxo-2-alkenals may possess by far the strongest electrophilic potential vs. dC and that the formation of 4-oxo-2-alkenal-adducted dC may thus serve as one mechanism for oxidative damage to DNA in vivo.  相似文献   

7.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

8.
Lipid peroxidation products, as well as the metabolic products of vinyl chloride, react with cellular DNA producing the mutagenic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilondC), along with several other exocyclic derivatives. High-resolution NMR spectroscopy and restrained molecular dynamics simulations were used to establish the solution structure of an 11-mer duplex containing an epsilondC.dC base-pair at its center. The NMR data suggested a regular right-handed helical structure having all residues in the anti orientation around the glycosydic torsion angle and Watson-Crick alignments for all canonical base-pairs of the duplex. Restrained molecular dynamics generated a three-dimensional model in excellent agreement with the spectroscopic data. The (epsilondC. dC)-duplex structure is a regular right-handed helix with a slight bend at the lesion site and no severe distortions of the sugar-phosphate backbone. The epsilondC adduct and its partner dC were displaced towards opposite grooves of the helix, resulting in a lesion-containing base-pair that was highly sheared but stabilized to some degree by the formation of a single hydrogen bond. Such a sheared base-pair alignment at the lesion site was previously observed for epsilondC.dG and epsilondC.T duplexes, and was also present in the crystal structures of duplexes containing dG.T and dG. U mismatches. These observations suggest the existence of a substrate structural motif that may be recognized by specific DNA glycosylases during the process of base excision repair.  相似文献   

9.
Z Gu  A Gorin  B E Hingerty  S Broyde  D J Patel 《Biochemistry》1999,38(33):10855-10870
A solution structural study has been undertaken on the aminofluorene-C8-dG ([AF]dG) adduct located at a single-strand-double-strand d(A1-A2-C3-[AF]G4-C5-T6-A7-C8-C9-A10-T11-C12-C13). d(G14-G15-A16-T17-G18-G19-T20- A21-G22-N23) 13/10-mer junction (N = C or A) using proton-proton distance restraints derived from NMR data in combination with intensity-based relaxation matrix refinement computations. This single-strand-double-strand junction models one arm of a replication fork composed of a 13-mer template strand which contains the [AF]dG modification site and a 10-mer primer strand which has been elongated up to the modified guanine with either its complementary dC partner or a dA mismatch. The solution structures establish that the duplex segment retains a minimally perturbed B-DNA conformation with Watson-Crick hydrogen-bonding retained up to the dC5.dG22 base pair. The guanine ring of the [AF]dG4 adduct adopts a syn glycosidic torsion angle and is displaced into the major groove when positioned opposite dC or dA residues. This base displacement of the modified guanine is accompanied by stacking of one face of the aminofluorene ring of [AF]dG4 with the dC5.dG22 base pair, while the other face of the aminofluorene ring is stacked with the purine ring of the nonadjacent dA2 residue. By contrast, the dC and dA residues opposite the junctional [AF]dG4 adduct site adopt distinctly different alignments. The dC23 residue positioned opposite the adduct site is looped out into the minor groove by the aminofluorene ring. The syn displaced orientation of the modified dG with stacking of the aminofluorene and the looped out position of the partner dC could be envisioned to cause polymerase stalling associated with subsequent misalignment leading to frameshift mutations in appropriate sequences. The dA23 residue positioned opposite the adduct site is positioned in the major groove with its purine ring aligned face down over the van der Waals surface of the major groove and its amino group directed toward the T6.A21 base pair. The Hoogsteen edge of the modified guanine of [AF]dG4 and the Watson-Crick edge of dA23 positioned opposite it are approximately coplanar and directed toward each other but are separated by twice the hydrogen-bonding distance required for pairing. This structure of [AF]dG opposite dA at a model template-primer junctional site can be compared with a previous structure of [AF]dG opposite dA within a fully paired duplex [Norman, D., Abuaf, P., Hingerty, B. E., Live, D. , Grunberger, D., Broyde, S., and Patel, D. J. (1989) Biochemistry 28, 7462-7476]. The alignment of the Hoogsteen edge of [AF]dG (syn) positioned opposite the Watson-Crick edge of dA (anti) has been observed for both systems with the separation greater in the case of the junctional alignment in the model template-primer system. However, the aminofluorene ring is positioned in the minor groove in the fully paired duplex while it stacks over the junctional base pair in the template-primer system. This suggests that the syn [AF]dG opposite dA junctional alignment can be readily incorporated within a duplex by a translation of this entity toward the minor groove.  相似文献   

10.
11.
Hormone replacement therapy (HRT) increases the risk of developing breast, ovarian, and endometrial cancers. Equilin and equilenin are the major components of the widely prescribed drug used for HRT. 4-Hydroxyequilenin (4-OHEN), a major metabolite of equilin and equilenin, promotes 4-OHEN-modified dC, dA, and dG DNA adducts. These DNA adducts were detected in breast tumor and adjacent normal tissues of several patients receiving HRT. We have recently found that the 4-OHEN-dC DNA adduct is a highly miscoding lesion generating C --> T transitions and C --> G transversions. To explore the mutagenic potential of another major 4-OHEN-dA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of 4-OHEN-dA (Pk-1, Pk-2, and Pk-3) were prepared by a postsynthetic method and used as DNA templates for primer extension reactions catalyzed by human DNA polymerase (pol) eta and kappa that are highly expressed in the reproductive organs. Primer extension catalyzed by pol eta or pol kappa occurred rapidly on the unmodified template to form fully extended products. With the major 4-OHEN-dA-modified templates (Pk-2 and Pk-3), primer extension was retarded prior to the lesion and opposite the lesion; a fraction of the primers was extended past the lesion. Steady-state kinetic studies with pol eta and pol kappa indicated that dTMP, the correct base, was preferentially incorporated opposite the 4-OHEN-dA lesion. In addition, pol eta and pol kappa bypassed the lesion by incorporating dAMP and dCMP, respectively, opposite the lesion and extended past the lesion. The relative bypass frequency past the 4-OHEN-dA lesion with pol eta was at least 2 orders of magnitude higher than that observed with pol kappa. The bypass frequency past Pk-2 was more efficient than that past Pk-3. Thus, 4-OHEN-dA is a miscoding lesion generating A --> T transversions and A --> G transitions. The miscoding frequency and specificity of 4-OHEN-dA varied depending on the stereoisomer of the 4-OHEN-dA adduct and DNA polymerase used.  相似文献   

12.
Alekseyev YO  Romano LJ 《Biochemistry》2002,41(13):4467-4479
The presence of bulky adducts in DNA is known to interfere with DNA replication not only at the site of the lesion but also at positions up to 5 nucleotides past the adduct location. Kinetic studies of primer extension by exonuclease-deficient E. coli DNA polymerase I (Klenow fragment) (KF) when (+)-trans- or (+)-cis-B[a]P-N(2)-dG adducts were positioned in the double-stranded region of the primer-templates showed that both stereoisomers significantly block downstream replication. However the (+)-cis adduct, which causes a stronger inhibition of the nucleotides insertion across from and immediately past the lesion, affected the downstream replication to a much smaller extent than did the (+)-trans adduct, especially when the B[a]P-modified dG was properly paired with a dC. The effects of mismatches across from the adduct and the sequence context surrounding the adduct were also dependent on the stereochemistry of the B[a]P adduct. Thus, the identity of the nucleotide across from the adduct that provided the best downstream replication was different for the (+)-cis and (+)-trans adducts, a factor that might differentially contribute to the mutagenic bypass of these lesions. These findings provide strong direct evidence that the conformations of the (+)-cis and (+)-trans adducts within the active site of KF are significantly different and probably differentially affect the interactions of the polymerase with the minor groove, thereby leading to different replication trends. The stereochemistry of the adduct was also found to differentially affect the sequence-mediated primer-template misalignments, resulting in different consequences during the bypass of the lesion.  相似文献   

13.
C Colombier  B Lippert    M Leng 《Nucleic acids research》1996,24(22):4519-4524
Our aim was to determine whether a single transplatin monofunctional adduct, either trans-[Pt(NH3)2(dC)Cl]+ or trans-[Pt(NH3)2(dG)Cl]+ within a homopyrimidine oligonucleotide, could further react and form an interstrand cross-link once the platinated oligonucleotide was bound to the complementary duplex. The single monofunctional adduct was located at either the 5' end or in the middle of the platinated oligonucleotide. In all the triplexes, specific interstrand cross-links were formed between the platinated Hoogsteen strand and the complementary purine-rich strand. No interstrand cross-links were detected between the platinated oligonucleotides and non-complementary DNA. The yield and the rate of the cross-linking reaction depend upon the nature and location of the monofunctional adducts. Half-lives of the monofunctional adducts within the triplexes were in the range 2-6 h. The potential use of the platinated oligonucleotides to modulate gene expression is discussed.  相似文献   

14.
Heterocyclic arylamines are highly mutagenic and cause tumors in animal models. The mutagenicity is attributed to the C8- and N2-G adducts, the latter of which accumulates due to slower repair. The C8- and N 2-G adducts derived from 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) were placed at the G1 and G3 sites of the NarI sequence, in which the G3 site is an established hot spot for frameshift mutation with the model arylamine derivative 2-acetylaminofluorene but G1 is not. Human DNA polymerase (pol) eta extended primers beyond template G-IQ adducts better than did pol kappa and much better than pol iota or delta. In 1-base incorporation studies, pol eta inserted C and A, pol iota inserted T, and pol kappa inserted G. Steady-state kinetic parameters were measured for these dNTPs opposite the C8- and N 2-IQ adducts at both sites, being most favorable for pol eta. Mass spectrometry of pol eta extension products revealed a single major product in each of four cases; with the G1 and G3 C8-IQ adducts, incorporation was largely error-free. With the G3 N 2-IQ adduct, a -2 deletion occurred at the site of the adduct. With the G1 N 2-IQ adduct, the product was error-free at the site opposite the base and then stalled. Thus, the pol eta products yielded frame-shifts with the N 2 but not the C8 IQ adducts. We show a role for pol eta and the complexity of different chemical adducts of IQ, DNA position, and DNA polymerases.  相似文献   

15.
Singer B  Medina M  Zhang Y  Wang Z  Guliaev AB  Hang B 《Biochemistry》2002,41(6):1778-1785
8-(Hydroxymethyl)-3,N(4)-etheno-C (8-HM-epsilonC) is an exocyclic adduct resulting from the reaction of dC with glycidaldehyde, a mutagen and animal carcinogen. This compound has now been synthesized and its phosphoramidite incorporated site-specifically into a defined 25-mer oligonucleotide. In this study, the mutagenic potential of this adduct in the 25-mer oligonucleotide was investigated in an in vitro primer-template extension assay using four mammalian DNA polymerases. The miscoding potentials were also compared to those of an analogous derivative, 3,N(4)-etheno C (epsilonC), in the same sequence. Both adducts primarily blocked replication by calf thymus DNA polymerase alpha at the modified base, while human polymerase beta catalyzed measurable replication synthesis through both adducts. Nucleotide insertion experiments showed that dA and dC were incorporated by pol beta opposite either adduct, which would result in a C --> T transition or C --> G transversion. Human polymerase eta, a product of the xeroderma pigmentosum variant (XP-V) gene, catalyzed the most efficient bypass of the two lesions with 25% and 32% for 8-HM-epsilonC and epsilonC bypassed after 15 min. Varying amounts of all four bases opposite the modified bases resulted with pol eta. Human polymerase kappa primarily blocked synthesis at the base prior to the adduct. However, some specific misincorporation of dT resulted, forming an epsilonC.T or 8-HM-epsilonC.T pair. From these data, we conclude that the newly synthesized glycidaldehyde-derived adduct, 8-HM-epsilonC, is a miscoding lesion. The bypass efficiency and insertion specificity of 8-HM-epsilonC and epsilonC were similar for all four polymerases tested, which could be attributed to the similar planarity and sugar conformations for these two derivatives as demonstrated by molecular modeling studies.  相似文献   

16.
cis-1,4-Dioxo-2-butene is a toxic metabolite of furan, while the trans-isomer is a product of deoxyribose oxidation in DNA. It has recently been reported that both cis- and trans-1,4-dioxo-2-butene react with the 2'-deoxynucleosides dC, dG, and dA to form novel diastereomeric oxadiazabicyclo(3.3.0)octaimine adducts. We have now extended these studies with kinetic and spectroscopic analyses of the reactions of cis- and trans-1,4-dioxo-2-butene, as well as the identification of novel adducts of dA. The reaction of dC with trans-1,4-dioxo-2-butene was observed to be nearly quantitative and produced two interchanging diastereomers with a second-order rate constant of 3.66 x 10(-2)M(-1)s(-1), which is nearly 10-fold faster than the reaction with the cis-isomer (3.74 x 10(-3)M(-1)s(-1)). HPLC analyses of reactions of 1,4-dioxo-2-butene with both dA and 9-methyladenine (pH 7.4, 37 degrees C) revealed multiple products including a novel pair of closely eluting fluorescent species of identical mass ([M+H] m/z 420), each of which contains two molecules of 1,4-dioxo-2-butene, and a more abundant but unstable and non-fluorescent species ([M+H] m/z 414). Partial structural characterization of the fluorescent adducts of dA revealed the presence of the oxadiazabicyclo(3.3.0)octaimine ring system common to the dC adducts. These results support the genotoxic potential of furan metabolites and products of deoxyribose oxidation.  相似文献   

17.
Fapy.dG is produced in DNA as a result of oxidative stress. Under some conditions Fapy.dG is formed in greater yields than 8-oxodG from a common chemical precursor. Recently, Fapy.dG and its C-nucleoside analogue were incorporated in chemically synthesized oligonucleotides at defined sites. Like 8-oxodG, Fapy.dG instructs DNA polymerase to misincorporate dA opposite it in vitro. The interactions of DNA containing Fapy.dG or the nonhydrolyzable analogue with Fpg and MutY are described. Fpg excises Fapy.dG (K(M) = 2.0 nM, k(cat) = 0.14 min(-1)) opposite dC approximately 17-fold more efficiently than when mispaired with dA, which is misinserted by DNA polymerase in vitro. Fpg also prefers to bind duplexes containing Fapy.dG.dC or beta-C-Fapy.dG.dC compared to those in which the lesion is opposite dA. MutY incises dA when it is opposite Fapy.dG and strongly binds duplexes containing the lesion or beta-C-Fapy.dG. Incision from Fapy.dG.dA is faster than from dG.dA mispairs but slower than from DNA containing 8-oxodG opposite dA. These data demonstrate that Fapy.dG closely resembles the interactions of 8-oxodG with two members of the GO repair pathway in vitro. The similar effects of Fapy.dG and 8-oxodG on DNA polymerase and repair enzymes in vitro raise the question as to whether Fapy.dG elicits similar effects in vivo.  相似文献   

18.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

19.
T M Reid  M S Lee  C M King 《Biochemistry》1990,29(26):6153-6161
Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by greater than 7-fold to 2.9% and of the AAF adduct by greater than 12-fold to 0.75%. The mutation frequency of the AF adduct was greatly reduced in a uvrA- strain while no mutations occurred with the AAF adduct in this strain. The sequence changes resulting from these treatments were dependent on adduct structure and the presence or absence of uracil on the strand opposite the adducts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Peterson LA  Vu C  Hingerty BE  Broyde S  Cosman M 《Biochemistry》2003,42(45):13134-13144
The pyridyloxobutylating agents derived from metabolically activated tobacco-specific nitrosamines can covalently modify guanine bases in DNA at the O(6) position. The adduct formed, O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine ([POB]dG), results in mutations that can lead to tumor formation, posing a significant cancer risk to humans exposed to tobacco smoke. A combined NMR-molecular mechanics computational approach was used to determine the solution structure of the [POB]dG adduct within an 11mer duplex sequence d(CCATAT-[POB]G-GCCC).d(GGGCCATATGG). In agreement with the NMR results, the POB ligand is located in the major groove, centered between the flanking 5'-side dT.dA and the 3'-side dG.dC base pairs and thus in the plane of the modified [POB]dG.dC base pair, which is displaced slightly into the minor groove. The modified base pair in the structure adopts wobble base pairing (hydrogen bonds between [POB]dG(N1) and dC(NH4) amino proton and between [POB]dG(NH2) amino proton and dC(N3)). A hydrogen bond appears to occur between the POB carbonyl oxygen and the partner dC's second amino proton. The modified guanine purine base, partner cytosine pyrimidine base, and POB pyridyl ring form a triplex via this unusual hydrogen-bonding pattern. The phosphodiester backbone twists at the lesion site, accounting for the unusual phosphorus chemical shift differences relative to those for the control DNA duplex. The helical distortions and wobble base pairing induced by the covalent binding of POB to the O(6)-position of dG help explain the significant decrease of 17.6 degrees C in melting temperature of the modified duplex relative to the unmodified control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号