首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guinea pig erythrocytes that had been exposed to influenza A virus activated the alternative complement pathway in whole human serum in the absence of natural antibodies. Because all virus particles were eluted from the treated cells, activation was not dependent on antiviral antibodies or on virus particles themselves. The relative capacity of treated erythrocytes to activate the alternative pathway was dependent on the amount of virus to which the cells had been exposed and was directly related to the amount of sialic acid removed from the erythrocyte membrane during incubation with either whole virus particles or purified viral sialidase. C3b bound to cells that had been treated with virus, and P-stabilized amplification convertase sites P,C3b,Bb formed on these cells, exhibited increased resistance to the action of the regulatory proteins beta-1H and C3b Ina compared with C3b and P,C3b,Bb on untreated, nonactivating cells. The acquired resistance of the cell-bound, P-stabilized amplification convertase to decay-dissociation by beta-1H was directly related to the activating capacity of the treated cells in whole serum (r = 0.95) and to the amount of sialic acid removed from the cells by the virus (r = 0.98). Desialation represents a specific alteration of the cell surface by which a nonimmune host, through activation of the alternative pathway, may deposit C3b on a target cell that had been exposed to influenza virus and may lyse virus virus-modified cells during orthomyxovirus infections.  相似文献   

2.
Serotype III group B streptococci (GBS) are a common cause of neonatal sepsis and meningitis. Although deficiency in maternal capsular polysaccharide (CPS)-specific IgG correlates with susceptibility of neonates to the GBS infection, serum deficient in CPS-specific IgG mediates significant opsonophagocytosis. This IgG-independent opsonophagocytosis requires activation of the complement pathway, a process requiring the presence of both Ca(2+) and Mg(2+), and is significantly reduced by chelating Ca(2+) with EGTA. In these studies, we defined a role of L-ficolin/mannose-binding lectin-associated serine protease (MASP) complexes in Ca(2+)-dependent, Ab-independent opsonophagocytosis of serotype III GBS. Incubation of GBS with affinity-purified L-ficolin/MASP complexes and C1q-depleted serum deficient in CPS-specific Ab supported opsonophagocytic killing, and this killing was inhibited by fluid-phase N-acetylglucosamine, the ligand for L-ficolin. Binding of L-ficolin was proportional to the CPS content of individual strains, and opsonophagocytic killing and C4 activation were inhibited by fluid-phase CPS, suggesting that L-ficolin binds to CPS. Sialic acid is known to inhibit alternative complement pathway activation, and, as expected, the bactericidal index (percentage of bacteria killed) for individual strains was inversely proportional to the sialic acid content of the CPS, and L-ficolin-initiated opsonophagocytic killing was significantly increased by addition of CPS-specific IgG2, which increased activation of the alternative pathway. We conclude that binding of L-ficolin/MASP complexes to the CPS generates C3 convertase C4b2a, which deposits C3b on GBS. C3b deposited by this lectin pathway forms alternative pathway C3 convertase C3bBb whose activity is enhanced by CPS-specific IgG2, leading to increased opsonophagocytic killing by further deposition of C3b on the GBS.  相似文献   

3.
Sindbis virus was grown in four different host cells and the carbohydrate portions of the glycoproteins were analyzed. Sindbis virus grown in BHK-21 cells has more sialic acid and galactose than Sindbis virus grown in chicken embryo cells. In other respects the carbohydrates from virus grown in these two hosts are very similar. Sindbis virus grown either in chick cells transformed by Rous sarcoma virus or in BHK cells transformed by polyoma virus was also examined. In comparisons of virus from normal and transformed cells, differences in the amount of sialic acid were observed; but otherwise the carbohydrate structures appeared basically similar. The growth conditions used for the host cell also affected the degree of completion of the carbohydrate chains of the viral glycoproteins.  相似文献   

4.
The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation pathways of complement in fighting streptococcal infection, little is known about the role of the lectin pathway, mainly due to the lack of appropriate experimental models of lectin pathway deficiency. We have recently established a mouse strain deficient of the lectin pathway effector enzyme mannan-binding lectin associated serine protease-2 (MASP-2) and shown that this mouse strain is unable to form the lectin pathway specific C3 and C5 convertases. Here we report that MASP-2 deficient mice (which can still activate complement via the classical pathway and the alternative pathway) are highly susceptible to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse ficolin A, human L-ficolin, and collectin 11 in both species, but not mannan-binding lectin (MBL), are the pattern recognition molecules that drive lectin pathway activation on the surface of S. pneumoniae. We further show that pneumococcal opsonisation via the lectin pathway can proceed in the absence of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci.  相似文献   

5.
Regulation by H of formation of the C3 and C5 alternative pathway convertases of complement on cells is dependent on such chemical characteristics of the cell surfaces as their membrane content in sialic acid. Properdin-stabilized C5 convertase sites were assembled on the non-activating cells of the alternative pathway, sheep erythrocytes (Es), and on the activating cells, desialated Es and rabbit erythrocytes (Er). C5 hemolytic sites were revealed by incubation of the convertase-bearing cells with limiting C5 and excess C6-C9. H inhibited generation of C5 hemolytic sites in a dose-related fashion on Es, Er, and desialated Es at molar ratios of H/C5 of 0.03 to 0.5. H similarly inhibited C5 utilization by the cell-bound C5 convertase on Es and desialated Es regardless of the cell membrane sialic acid content; however, H was three to five times less effective on Er. Kinetic experiments also suggested that C5 hemolytic sites are generated more rapidly on Er than on Es and desialated Es. The inhibition effect of H was independent of the number of C5 convertase sites per cell on all cell types; two to three times more residual hemolytic sites were found on convertase-bearing Es that had been incubated with C5 and H as compared with cells that had been decayed by H before incubation with C5. Furthermore, H also inhibited C5 interaction with a preformed classical pathway C5 convertase. These results suggest that H interacts with C5 so as to alter C5 binding and/or cleavage by the cell-bound C5 alternative pathway convertase. Sialic acid-independent modulation by H of C5 cleavage by the C5 convertase represents an additional regulatory step in the activation of the human alternative complement pathway.  相似文献   

6.
The course of Sindbis virus infection in 12-day-old BALB/c mice was altered significantly in animals depleted of the third component of complement (C3) by treatment with purified cobra venom factor (CoVF). Although the same percentage of C3-depleted and normal animals died (30%) after the subcutaneous inoculation of 1000 PFU Sindbis virus, the mean day of death was later in C3-depleted mice (8.4 days) than in controls (6.5 days). In addition, morbidity was prolonged in C3-depleted mice. Growth of virus at the inoculation site in the foot was not different; however, viremia was prolonged and the amount of virus in the brain was 1000-fold greater 6 days after infection in C3-depleted animals. These studies demonstrated that complement plays an important role in the host's response to Sindbis virus infection by participating in both beneficial and immunopathologic responses to the infection.  相似文献   

7.
The opsonic requirements for phagocytosis of S. pneumoniae types 6, 7, 18, and 23 were determined in normal and C2 deficient serum, and in normal serum chelated with magnesium ethyleneglycoltetraacetic acid. All four strains were effectively opsonized via the alternative complement pathway, a finding suggesting that the capsular polysaccharides of these strains activated complement via the alternative pathway. Since bacteremic pneumococcal disease is often associated with circulating capsular polysaccharide, it was considered that this cellular component may activate complement in vivo and impair host defenses by producing an opsonic defect for pneumococci. To examine this hypothesis, serum was incubated with suspensions of whole S. pneumoniae types 6, 7, 18, or 23 or with purified capsular polysaccharide from each of these types, and residual complement activity and opsonic capacity were measured. Hemolytic C 3--9 complement activity and opsonic capacity for 3H-thymidine labeled Salmonella typhimurium, a species effectively opsonized via the alternative pathway, were reduced in serum following incubation. Polysaccharide concentrations as low as 1 microgram/ml inhibited serum opsonic capacity for salmonella. Whole pneumococci and pneumococcal capsular polysaccharide also inhibited the opsonic activity of human C2 deficient serum for salmonella, further evidence for activation of complement via the alternative pathway. Pneumococcal capsular polysaccharide markedly inhibited the opsonic capacity of normal serum for the homologous pneumoccal type. Thus, amounts of pneumococcal capsular polysaccharide, similar to those found in the serum of patients with pneumococcal disease, bring about decomplementation of serum via activation of the alternative pathway and inhibit pneumococcal opsonization.  相似文献   

8.
The effect of glycophorin on complement activation via the alternative pathway was examined by incorporating it into the liposome membrane with trinitrophenylaminocaproyldipalmitoylphosphatidylethanolamine (TNP-Cap-DPPE). Liposomes having incorporated TNP-Cap-DPPE onto the membrane activate the alternative complement pathway of guinea pig as reported previously, and the additional insertion of glycophorin was found to reduce their activating capacity on the alternative complement pathway. This inhibitory effect was cancelled by pretreatment of the glycophorin-containing liposomes with neuraminidase indicating that the sialic acid in glycophorin is playing a role in the regulation of alternative complement pathway-activation on the biological membrane.  相似文献   

9.
Particulate glycoproteins lacking sialic acid, such as desialylated enveloped viruses, readily activate complement through the alternative pathway. Human immunodeficiency virus type 1 (HIV-1) contains two heavily glycosylated and partially sialylated envelope glycoproteins: a surface gp120 and a transmembrane gp41. The abilities of naturally glycosylated HIV-1 and glycosylation-modified HIV-1 to interact with the complement system were examined with a biological assay which measured the binding of whole virus particles to cells expressing CR2 (CD21), the complement receptor found naturally in abundance on follicular dendritic cells and immature B cells. HIV-1 IIIB was synthesized in the presence or absence of the mannosidase II inhibitor, swainsonine, to give rise to high-mannose-type, nonsialylated, nonfucosylated carbohydrate moieties. The virus also was treated with neuraminidase or endo-beta-galactosidase to remove terminal sialic acids. An enzyme immunoassay specific for HIV-1 p24 core protein was used to quantitate the amount of virus bound to cell surfaces. Virus particles incubated with 1:3-diluted, fresh HIV-1-negative human serum as a source of complement readily bound to MT-2 (CD4+ CR2+) and Raji-3 (CD4- CR2+) cells but not to CEM (CD4+ CR2-) cells, suggesting that the virus bound to CR2 independently of CD4. Compared with heat-inactivated or C3-deficient sera, fresh complement increased binding by as much as 62 times for naturally glycosylated virus, and 5 times more than this for glycosylation-modified virus. Similar observations were made with freshly isolated, non-mitogen-stimulated peripheral blood mononuclear cells. Additional evidence that HIV-1 bound to CR2 independently of CD4 was provided by the fact that binding was blocked by monoclonal antibody OKB7 (anti-CR2) but not by OKT4a (anti-CD4). Also, the virus bound to transfected K562 cells (CD4-) which expressed recombinant human CR2 but did not bind to untransfected K562 cells. Results obtained with complement component-deficient sera indicated that binding required the alternative complement pathway. Raji-3 and transfected K562 cells could not be infected with HIV-1 in the presence of complement, suggesting that utilization of CR2 as a receptor in the absence of CD4 does not allow virus entry. The demonstration of CR2 as a receptor for HIV-1 in the presence of complement, together with the ability to enhance binding by desialylation, provides new insights into mechanisms of HIV-1-induced immunity and immunopathogenesis.  相似文献   

10.
All normal human sera examined neutralized WS/33 H1N1 influenza virus efficiently by one of two antibody-dependent mechanisms. A minority of the sera contained moderate levels of IgG antibody directed against the viral hemagglutinin that had the ability to directly neutralize the virus. The majority of sera tested contained very low levels of IgG anti-hemagglutinin antibody, which was detectable with a specific ELISA but not by conventional HAI assays. Such IgG antibody was unable to directly neutralize the virus. Studies with agammaglobulinemic serum and with sera depleted of and reconstituted with complement components established essential roles for IgG and the components of the classical complement pathway through C3 for neutralization. The components of the alternative and membrane attack pathways were not needed for neutralization. As anticipated from the requirement for IgG and exclusive mediation of neutralization by the classical pathway, the virus-IgG immune complex activated purified C1. Binding of C3 and C4 to the virus was demonstrated, as was classical pathway-mediated triggering of the alternative pathway, with recruitment of properdin. In addition, the H1N1 influenza virus also directly activated the alternative complement pathway in human serum, leading to C3 and properdin deposition on the viral envelope. Such direct alternative pathway activation also required immunoglobulin. However, the alternative pathway alone was unable to neutralize the virus. Thus, most normal sera examined contain low levels of IgG anti-hemagglutinin antibody, which activate the classical pathway of the complement system and neutralize WS/33 influenza virus by deposition of C3 and C4 on the viral envelope.  相似文献   

11.
D P Fan  B M Sefton 《Cell》1978,15(3):985-992
We have compared the mechanisms of entry into host cells of three enveloped viruses: Sendai virus, vesicular stomatitis virus (VSV) and Sindbis virus. Virus entry by membrane fusion should antigenically modify the surface of a newly infected cell in such a way that it will be killed by anti-viral antibody and complement. On the other hand, virus entry by a mechanism involving uptake by the cell of the whole virion should not make cells sensitive to antibody and complement. As expected, cells newly infected with Sendai virus were readily and completely lysed by anti-Sendai antibody and complement. In marked contrast, however, cells newly infected with either Sindbis virus or VSV were killed by anti-viral antibody and complement only when infected at an extremely high multiplicity of infection, in excess of 1000 plaque-forming units per cell. We favor the following explanation for these results with Sindbis virus and VSV: a very large majority of the Sindbis and VSV virions entered the infected cells by some means other than membrane fusion, presumably engulfment of the whole particle. Efficient entry by way of membrane fusion may therefore not be a general characteristic of enveloped viruses.  相似文献   

12.
Immune complex-induced inflammation can be mediated by the classical pathway of complement. However, using mice genetically deficient in factor B or C4, we have shown that the collagen Ab-induced model of arthritis requires the alternative pathway of complement and is not dependent on the classical pathway. We now demonstrate that collagen Ab-induced arthritis is not altered in mice genetically deficient in either C1q or mannose-binding lectins A and C, or in both C1q and mannose-binding lectins. These in vivo results prove the ability of the alternative pathway to carry out pathologic complement activation in the combined absence of intact classical and lectin pathways. C3 activation was also examined in vitro by adherent collagen-anti-collagen immune complexes using sera from normal or complement-deficient mice. These results confirm the ability of the alternative pathway to mediate immune complex-induced C3 activation when C4 or C1q, or both C1q and mannose-binding lectins, are absent. However, when all three activation pathways of complement are intact, initiation by immune complexes occurs primarily by the classical pathway. These results indicate that the alternative pathway amplification loop, with its ability to greatly enhance C3 activation, is necessary to mediate inflammatory arthritis induced by adherent immune complexes.  相似文献   

13.
The course of infection with an attenuated strain of fowlpox virus (FPV), which is known to induce antibody-independent activation of complement via the alternative pathway, was investigated in 1- to 3-day-old chickens and 14-day-old chicken embryos by treatment with cobra venom factor (CVF). CVF was found to inhibit complement activity transiently via the alternative pathway but not via the classical pathway. In chickens treated with CVF, virus growth in the skin was enhanced, and pock lesions tended to disseminate, leading to fatal infection in some birds. Histologically, an acute inflammation at an early stage of infection (within 3 days) was inhibited, and virus content in the pock lesion was increased. In chicken embryos with immature immune capacities, CVF treatment caused changes in pock morphology from clear pocks to diffuse ones, an increase in virus content in the pock, and inhibition of cell infiltration. Thus, FPV infection was aggravated in both CVF-treated chickens and chicken embryos. These results are discussed in relation to roles of complement in the elimination of virus at an early stage of FPV infection.  相似文献   

14.
Liposomes were used to determine whether gangliosides containing certain structurally defined analogues of sialic acid could inhibit activation of the alternative pathway of human C. Gangliosides containing sialic acid residues with modifications in the N-acetyl group, carboxyl group, or polyhydroxylated tail were either isolated from natural sources or prepared by chemical modification of the native sialic acid structure. Sialic acid lost more than 90% of its inhibitory activity after removal of just the C9 carbon from the polyhydroxylated tail. Sialic acid was also unable to inhibit activation after converting the carboxyl group to a hydroxymethyl group. Galactose oxidase/NaB3H4 treatment of liposomes containing gangliosides with native or modified sialic acid residues confirmed that neither modification altered the amount of gangliosides exposed at the liposome surface. Changing the N-linked acetyl group to a glycolyl group had no effect on the inhibitory activity of sialic acid. These data further define the structural features of sialic acid that are important in regulation of alternative pathway activation. Both the C9 carbon of the polyhydroxylated tail and the carboxyl group are essential for this function; whereas, the N-linked acetyl group may be modified without loss of activity.  相似文献   

15.
Recombinant adeno-associated viruses (AAV) are promising gene therapy vectors. We have recently identified a bovine adeno-associated virus (BAAV) that demonstrates unique tropism and transduction activity compared to primate AAVs. To better understand the entry pathway and cell tropism of BAAV, we have characterized the initial cell surface interactions required for transduction with BAAV vectors. Like a number of AAVs, BAAV requires cell surface sialic acid groups for transduction and virus attachment. However, glycosphingolipids (GSLs), not cell surface proteins, were required for vector entry and transduction. Incorporation of gangliosides, ceramide-based glycolipids containing one or more sialic acid groups, into the cytoplasmic cell membranes of GSL-depleted COS cells partially reconstituted BAAV transduction. The dependency of BAAV on gangliosides for transduction was further confirmed by studies with C6 cells, a rat glioma cell line that is deficient in the synthesis of complex gangliosides. C6 cells were resistant to transduction by BAAV. Addition of gangliosides to C6 cells prior to transduction rendered the cells susceptible to transduction by BAAV. Therefore, gangliosides are a likely receptor for BAAV.  相似文献   

16.
Complement is an innate immune response system that most animal viruses encounter during natural infections. We have tested the role of human complement in the neutralization of virus particles harboring the Nipah virus (NiV) glycoproteins. A luciferase-expressing vesicular stomatitis virus (VSV) pseudotype that contained the NiV fusion (F) and attachment (G) glycoproteins (NiVpp) showed dose- and time-dependent activation of human complement through the alternative pathway. In contrast to our findings with other paramyxoviruses, normal human serum (NHS) alone did not neutralize NiVpp infectivity in vitro, and electron microscopy demonstrated no significant deposition of complement component C3 on particles. This lack of NiVpp neutralization by NHS was not due to a global inhibition of complement pathways, since complement was found to significantly enhance neutralization by antibodies specific for the NiV F and G glycoproteins. Complement components C4 and C1q were necessary but not sufficient by themselves for the enhancement of antibody neutralization. Human complement also enhanced NiVpp neutralization by a soluble version of the NiV receptor EphrinB2, and this depended on components in the classical pathway. The ability of complement to enhance neutralization fell into one of two profiles: (i) anti-F monoclonal antibodies showed enhancement only at high and not low antibody concentrations, and (ii) anti-G monoclonal antibodies and EphrinB2 showed enhancement at both high and very low levels of antibody (e.g., 3.1 ng) or EphrinB2 (e.g., 2.5 ng). Together, these data establish the importance of human complement in the neutralization of particles containing the NiV glycoproteins and will help guide the design of more effective therapeutics that harness the potency of complement pathways.  相似文献   

17.
Glycoprotein C (gC) of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) binds complement component C3b and protects virus from complement-mediated neutralization. Differences in complement interacting domains exist between gC of HSV-1 (gC1) and HSV-2 (gC2), since the amino terminus of gC1 blocks complement C5 from binding to C3b, while gC2 fails to interfere with this activity. We previously reported that neutralization of HSV-1 gC-null virus by HSV antibody-negative human serum requires activation of C5 but not of downstream components of the classical complement pathway. In this report, we evaluated whether activation of C5 is sufficient to neutralize HSV-2 gC-null virus, or whether formation of the membrane attack complex by C6 to C9 is required for neutralization. We found that activation of the classical complement pathway up to C5 was sufficient to neutralize HSV-2 gC-null virus by HSV antibody-negative human serum. We evaluated the mechanisms by which complement activation occurred in seronegative human serum. Interestingly, natural immunoglobulin M antibodies bound to virus, which triggered activation of C1q and the classical complement pathway. HSV antibody-negative sera obtained from four individuals differed over an approximately 10-fold range in their potency for complement-mediated virus neutralization. These findings indicate that humans differ in the ability of their innate immune systems to neutralize HSV-1 or HSV-2 gC-null virus and that a critical function of gC1 and gC2 is to prevent C5 activation.  相似文献   

18.
Procedures are described for the purification of the Sindbis virus structural proteins. The amino acid and carbohydrate compositions of the purified proteins are presented for virus grown in BHK-21/13 and chicken embryo cells. Glycoprotein E1 from virus grown in BHK cells is deficient in a mannose-rich glycopeptide found on that glycoprotein when virus is grown in chicken embryo cells. The complex glactose-containing glycopeptides appear similar for virus grown in both hosts. However, when virus is grown in BHK cells, both glycoproteins are enriched in those glycopeptides containing more sialic acid. Since the two viral glycoproteins are difficult to separate cleanly during purification, it is suggested that there may be strong, but noncovalent, interactions between glycoproteins E1 and E2. It is also suggested that there may be an interaction between glycoprotein E2 and a component of the nucleocapsid.  相似文献   

19.
Uromodulin (UMOD) can bind complement factor H (cFH) and inhibit the activation of complement alternative pathway (AP) by enhancing the cofactor activity of cFH on degeneration of C3b. UMOD, an N-glycans-rich glycoprotein, is expressed in thick ascending limb of Henle's loop where the epithelia need to adapt to gradient change of pH and ion concentration. ELISA-based cofactor activity of cFH and erythrocytes haemolytic assay was used to measure the impact of native and de-glycosylated UMOD on the functions of cFH. The binding assay was performed under different pH and ion concentrations, using ELISA. The levels of sialic acid on UMOD, from healthy controls and patients with chronic kidney disease (CKD), were also detected by lectin-ELISA. It was shown that removal of glycans decreased the binding between UMOD and cFH and abolished the ability of enhancing C3b degradation. In acidic condition, the binding became stronger, but it reduced as sodium concentration increased. A significant decrease of α-2,3 sialic acids on UMOD was observed in CKD patients compared with that of healthy individuals. The sialic acids on UMOD, local pH and sodium concentration could impact the binding capacity between UMOD and cFH and thus regulate the activation of complement AP.  相似文献   

20.
The envelope surface glycoprotein C (gC) of HSV-1 interferes with the complement cascade by binding C3 and activation products C3b, iC3b, and C3c, and by blocking the interaction of C5 and properdin with C3b. Wild-type HSV-1 is resistant to Ab-independent complement neutralization; however, HSV-1 mutant virus lacking gC is highly susceptible to complement resulting in > or =100-fold reduction in virus titer. We evaluated the mechanisms by which complement inhibits HSV-1 gC null virus to better understand how gC protects against complement-mediated neutralization. C8-depleted serum prepared from an HSV-1 and -2 Ab-negative donor neutralized gC null virus comparable to complement-intact serum, indicating that C8 and terminal lytic activity are not required. In contrast, C5-depleted serum from the same donor failed to neutralize gC null virus, supporting a requirement for C5. EDTA-treated serum did not neutralize gC null virus, indicating that complement activation is required. Factor D-depleted and C6-depleted sera neutralized virus, suggesting that the alternative complement pathway and complement components beyond C5 are not required. Complement did not aggregate virus or block attachment to cells. However, complement inhibited infection before early viral gene expression, indicating that complement affects one or more of the following steps in virus replication: virus entry, uncoating, DNA transport to the nucleus, or immediate early gene expression. Therefore, in the absence of gC, HSV-1 is readily inhibited by complement by a C5-dependent mechanism that does not require viral lysis, aggregation, or blocking virus attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号