首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NO in its environment may vary considerably depending on various factors. This study shows oxidative mechanism of cellular membrane alterations, which is not associated with triggering of ONOOH generation but is induced by pure NO. Our investigation examined the influence of low concentration of NO (0.1; 0.2 mmol/l) on the qualitative changes of structure and dynamics of erythrocyte membrane. NO causes a statistically significant increase in membrane fluidity on different depths of lipid bilayer that is correlated with increase of lipids peroxidation. Statistically significant changes in the conformational state of cytoskeleton proteins were also detected. NO can be considered as a molecule responsible for determining rheological properties of erythrocytes membrane. Therefore, we propose that NO acts as pro-oxidant molecule at concentrations for which membrane appeared to be the first target before it entered the cytosol.  相似文献   

2.
As an endothelium-derived relaxing factor, nitric oxide (NO) maintains blood flow and O2 transport to tissues. Under normal conditions a delicate balance exists in the vascular system between endothelium-derived NO, an antioxidant, and the pro-oxidant elements of the vascular system, O-2, and peroxynitrite (a by-product of the reaction of NO and superoxide); in addition there is a balance between neurogenic tonic contraction and NO-mediated relaxation. The former balance can be disrupted in favor of peroxynitrite and hydrogen peroxide under the conditions of ischemia/reperfusion. This review suggests that NO may be beneficial, not only in terms of its new potential in improving O2 transport without accompanying significant increase in tissue blood flow, but also in its ability to suppress the prooxidative reagents of the vascular systems. These include NO-mediated inhibition of transendothelial migration by leukocyte and the antioxidative effects of NO with regard to ischemia/reperfusion; the relevance of these hypotheses to systemic administration of NO donors is discussed.  相似文献   

3.
Recent experimental data of oxygen equilibrium constants of human adult hemoglobin, which are measured over a wide range of oxygen pressures, are analyzed successfully from the viewpoint that the change in the molecular structure of hemoglobin induced by oxygenation is considered individually at each stage of oxygenation. Then, a simple phenomenological rule, which explains quantitatively the values of the four Adair constants with only three parameters, is found for hemoglobin under normal physiological conditions. The temperature dependence of these parameters suggests a sequence of the conformational changes such that until the third stage of oxygenation the conformational changes occur within the deoxy quaternary structure and at the fourth stage of oxygenation the deoxy quaternary structure is altered to the oxy one. The effects of pH and phosphate compounds on the Adair constants are discussed, and a possible modification and extension of the rule is suggested. The connection between the rule and the molecular structures of deoxy- and oxyhemoglobin is also discussed.  相似文献   

4.
Alprazolam (ALP) is a widely prescribed sedative and antidepressant benzodiazepine group of drugs. The wide uses of this drug lead us to investigate its possible interaction with hemoglobin (Hb). Spectrophotometric and spectofluorimetric studies showed strong binding of ALP with Hb. Circular dichroic spectra showed that alpha-helical structure of Hb-subunits has been largely changed. On ALP treatment partial pressure of O(2) is increased in the blood indicating release of O(2) from erythrocytes. Further, the binding of ALP-induced conformational changes in Hb resulting in larger Hb particle size was demonstrated by dynamic light scattering experiment. Thus, the present study unambiguously raises question of danger of random usage of ALP, which binds with and changes the function of Hb.  相似文献   

5.
Mukai M  Ouellet Y  Ouellet H  Guertin M  Yeh SR 《Biochemistry》2004,43(10):2764-2770
The resonance Raman spectra of the NO-bound ferric derivatives of wild-type HbN and the B10 Tyr --> Phe mutant of HbN, a hemoglobin from Mycobacterium tuberculosis, were examined with both Soret and UV excitation. The Fe-N-O stretching and bending modes of the NO derivative of the wild-type protein were tentatively assigned at 591 and 579 cm(-1), respectively. Upon B10 mutation, the Fe-NO stretching mode was slightly enhanced and the bending mode diminished in amplitude. In addition, the N-O stretching mode shifted from 1914 to 1908 cm(-1). These data suggest that the B10 Tyr forms an H-bond(s) with the heme-bound NO and causes it to bend in the wild-type protein. To further investigate the interaction between the B10 Tyr and the heme-bound NO, we examined the UV Raman spectrum of the B10 Tyr by subtracting the B10 mutant spectrum from the wild-type spectrum. It was found that, upon NO binding to the ferric protein, the Y(8a) mode of the B10 Tyr shifted from 1616 to 1622 cm(-1), confirming a direct interaction between the B10 Tyr and the heme-bound NO. Furthermore, the Y(8a) mode of the other two Tyr residues at positions 16 and 72 that are remote from the heme was also affected by NO binding, suggesting that NO binding to the distal site of the heme triggers a large-scale conformational change that propagates through the pre-F helix loop to the E and B helices. This large-scale conformational change triggered by NO binding may play an important role in regulating the ligand binding properties and/or the chemical reactivity of HbN.  相似文献   

6.
Nitric oxide hemoglobin in mice and rats in endotoxic shock.   总被引:1,自引:0,他引:1  
Mice given ip bacterial endotoxin (LPS) at 10 mg/kg showed a statistically significant decrease in plasma glucose and an increase in hematocrit at 2 h after injection. Glucose was still decreased at 4 h, but the hematocrit had returned to control values. Nitrosylated hemoglobin (HbNO) was detected at 3, but not at 2 h. By 4 h it had increased 5-fold. When N-monomethylarginine (NMMA) at 100 mg/kg, ip was given 2 h after LPS in mice, the HbNO concentration at 4 h was significantly reduced, but the hypoglycemia was worsened because NMMA itself produced a significant hypoglycemia. Rats given iv LPS, 20 mg/kg, showed a fleeting, transient rise in mean arterial pressure (MAP) lasting only a few min. Thereafter, the MAP tended to drift slowly downward over 4 h, but when the MAP at 30 min intervals was compared to the pre-LPS MAP, there were no significant differences. Plasma glucose in unanesthetized rats was significantly elevated at 1 h, back to control at 2 h, and significantly decreased at 3 h. HbNO was detected as early as 1 h after injection. By 2 h the HbNO concentrations exceeded the highest levels found in mice, and they were still increasing as late as 5 h after injection. Unanesthetized rats showed toxic signs and 3/12 rats died within 4 hours of LPS administration. These results are consistent with a model for endotoxic shock in which LPS stimulates an inducible pathway for NO synthesis.  相似文献   

7.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

8.
Nitric oxide inhibition varies with hemoglobin saturation   总被引:1,自引:0,他引:1  
  相似文献   

9.
Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV and visible CD studies, together with enzymatic assays, were carried out to monitor the thermal denaturation of horseradish peroxidase isoenzyme c (HRPc) at pH 3.0. The spectral parameters were complementary to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while that in the Soret region, as well as changes in intrinsic tryptophan fluorescence emission, corresponded to changes in the tertiary structure of the enzyme. The results, supported by data about changes in enzymatic activity with temperature, show that thermally induced transitions for peroxidase are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of HRPc denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme N -->k D where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

10.
Argininosuccinate synthetase (AS) is the rate-limiting enzyme of both the urea and arginine-citrulline cycles. In mammals, deficiency of AS leads to citrullinemia, a debilitating and often fatal autosomal recessive urea cycle disorder, whereas its overexpression for sustained nitric oxide production via the arginine-citrulline cycle leads to the potentially fatal hypotension associated with septic and cytokine-induced circulatory shock. The crystal structures of Escherichia coli argininosuccinate synthetase (EAS) in complex with ATP and with ATP and citrulline have been determined at 2.0-A resolution. These are the first EAS structures to be solved in the presence of a nucleotide substrate and clearly identify the residues that interact with both ATP and citrulline. Two distinct conformations are revealed for ATP, both of which are believed to be catalytically relevant. In addition, comparisons of these EAS structures with those of the apoenzyme and EAS complexed with aspartate and citrulline (Lemke, C. T., and Howell, P. L. (2001) Structure (Lond.) 9, 1153-1164) provide structural evidence of ATP-induced conformational changes in the nucleotide binding domain. Combined, these structures also provide structural explanations of some of the observed kinetic properties of the enzyme and have enabled a detailed enzymatic mechanism of AS catalysis to be proposed.  相似文献   

11.
The experiment described here tests the effect of intracerebroventricular (icv) injection of nitric oxide (NO) precursors, such as L-arginine (L-arg) and nitroprusside (NP), on the thermogenic changes induced by lesion of the lateral hypothalamus (LH). The firing rate of the nerves innervating interscapular brown adipose tissue (IBAT), along with IBAT and colonic temperatures (TIBAT and TC) were monitored in urethane-anesthetized male Sprague-Dowley rats lesioned in the LH. These variables were measured before and after and icv injection of 4 μmol L-arg or 400 nmol NP. The same variables were also monitored in: a) lesioned rats with icv administration of saline; b) sham-lesioned animals with icv injection of L-arg or NP; c) sham-lesioned rats with icv injection of saline. The results show that L-arg or NP injection reduces the increases in firing rate, TIBAT, and TC induced by LH lesion. These findings suggest that NO plays a key role in the thermogenic changes following LH lesion.  相似文献   

12.
Experimental evidence has shown that nitrite anion plays a key role in one of the proposed mechanisms for hypoxic vasodilation, in which the erythrocyte acts as a NO generator and deoxygenated hemoglobin in pre-capillary arterioles reduces nitrite to NO, which contributes to vascular smooth muscle relaxation. However, because of the complex reactions among nitrite, hemoglobin, and the NO that is formed, the amount of NO delivered by this mechanism under various conditions has not been quantified experimentally. Furthermore, paracrine NO is scavenged by cell-free hemoglobin, as shown by studies of diseases characterized by extensive hemolysis (e.g., sickle cell disease) and the administration of hemoglobin-based oxygen carriers. Taking into consideration the free access of cell-free hemoglobin to the vascular wall and its ability to act as a nitrite reductase, we have now examined the hypothesis that in hypoxia this cell-free hemoglobin could serve as an additional endocrine source of NO. In this study, we constructed a multicellular model to characterize the amount of NO delivered by the reaction of nitrite with both intraerythrocytic and cell-free hemoglobin, while intentionally neglecting all other possible sources of NO in the vasculature. We also examined the roles of hemoglobin molecules in each compartment as nitrite reductases and NO scavengers using the model. Our calculations show that: (1) approximately 0.04pM NO from erythrocytes could reach the smooth muscle if free diffusion were the sole export mechanism; however, this value could rise to approximately 43pM with a membrane-associated mechanism that facilitated NO release from erythrocytes; the results also strongly depend on the erythrocyte membrane permeability to NO; (2) despite the closer proximity of cell-free hemoglobin to the smooth muscle, cell-free hemoglobin reaction with nitrite generates approximately 0.02pM of free NO that can reach the vascular wall, because of a strong self-capture effect. However, it is worth noting that this value is in the same range as erythrocytic hemoglobin-generated NO that is able to diffuse freely out of the cell, despite the tremendous difference in hemoglobin concentration in both cases (microM hemoglobin in plasma vs. mM in erythrocyte); (3) intraerythrocytic hemoglobin encapsulated by a NO-resistant membrane is the major source of NO from nitrite reduction, and cell-free hemoglobin is a significant scavenger of both paracrine and endocrine NO.  相似文献   

13.
We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.  相似文献   

14.
Although the importance of red blood cells in augmenting hypoxic pulmonary vasoconstriction has been recognized for decades, only recently has it become clear that this occurs primarily because of the inactivation of nitric oxide (NO) by hemoglobin. This interaction between red blood cells, NO, and the pulmonary circulation is critical in understanding the effects of anemia and polycythemia on pulmonary blood flow distribution, gas exchange, and global O2 delivery and in understanding the development of hemoglobin-based oxygen carriers. This review will discuss the proposed mechanisms for initiation of hypoxic pulmonary vasoconstriction and regulation of hypoxic pulmonary vasoconstriction by red blood cells with an emphasis on hemoglobin-NO interactions. In addition, the review will discuss how biologic (S-nitrosation) or pharmacologic (cross-linking) modification of hemoglobin may affect pulmonary circulatory-hemoglobin interactions.  相似文献   

15.
These experiments indicate that absorbance changes observed at the 425 nm isosbestic point of the Hb and HbCO following laser photolysis of HbCO provide a direct measure of the rates of quaternary conformational changes between rapidly reacting Hb (the immediate product of full photolysis) and slowly reacting normal deoxyhemoglobin. Hb, first observed by Gibson (Gibson, Q.H. (1959) Biochem. J. 71, 293-303), Has been interpreted as deoxyhemoglobin remaining in the liganded quaternary conformation following rapid removal of ligand by a light pulse. In borate buffers between pH 8.4 and 9.6 particularly simple pH-independent results were obtained which allowed the use of a Monod. Wyman, and Changeux model (Monod, J., Wyman, J., and Changeux, J (1965) J. Mol. Biol. 12, 88-118) to fit the data. In this case Hb is taken to be R state deoxyhemoglobin. Partial photolysis experiments at 425 nm show that the rate of the R - T conformational change at 20 degrees decreases by about a factor of 2 for each additional bound ligand. The rate of the ligand-free conformational change is found to be 920 +/- 60s(-1), 6400 +/- 600s(-1), and 15,700 +/- 700(-1) respectively at 3 degrees, 20 degrees, and 30 degrees. The previously uninterpreted effects of flash length and partial photolysis on the CO recombination kinetics can be explained in terms of the present model. Kinetic results obtained below pH 8 are found to be inconsistent with a two-state model. It appears that binding of inositol hexaphosphate produces a new rapidly reacting quaternary conformation of HbCO.  相似文献   

16.
Freeze-drying of hemoglobin leads to the formation of a significant amount of methemoglobin. It is possible to decrease this transformation in the presence of protective compounds. The mechanism of action of these protectors is presently unknown. Spectroscopic absorption and CD spectra between 190 and 700 nm are presented for samples of hemoglobin freeze-dried with or without protection and for control solutions of oxyhemoglobin and methemoglobin. The interpretation of the dichroic spectra allows us to observe the secondary, tertiary, and quaternary structure changes that hemoglobin undergoes with freeze-drying. The results indicate that the absence of a protector weakly influences the conformation in the vicinity of the heme and increases the helicity of protein chains from 75 to 81%. Furthermore, experimental data, in agreement with electron-spin resonance measurements, suggest that the protective effect is not the result of a direct bond between the iron and the compound added.  相似文献   

17.
Nitric oxide decreases insulin resistance induced by high-fructose feeding.   总被引:1,自引:0,他引:1  
The effect of nitric oxide (NO) on insulin resistance was studied in high-fructose-fed rats. A sequential hyperinsulinemic euglycemic clamp procedure was employed (insulin infusion rates: 3 and 30 mU/kg BW/min) in 12 high-fructose-fed rats and 12 chow-fed rats while awake. Half of the high-fructose-fed and the chow-fed rats, respectively, were continuously given sodium nitroprusside (SNP, 3 ng/kg BW/min) during the clamp study. Blood glucose was clamped at the fasting level in each rat. Plasma insulin levels during the 3 and 30 mU/kg BW/min insulin infusions were 30 and 400 microU/ml, respectively. Metabolic clearance rate of glucose (MCR) was regarded as an index of whole body insulin action. At both 3 and 30 mU/kg BW/min insulin infusions, high-fructose feeding showed a significant decrease in MCR compared with the chow-fed rats. However, decreased MCRs were stimulated by SNP administration and reached similar levels as the chow-fed rats. SNP infusion did not influence MCRs in the chow-fed rats. Therefore it could be concluded that NO can improve insulin resistance induced by high-fructose feeding.  相似文献   

18.
Exopenicillinase of Bacillus cereus 569/H was cross-linked with toluene 2,4-diisocyanate in the presence of cephalothin, cloxacillin or no substrate. The derivatives show significant differences in susceptibility to inactivation by heat, urea, iodination or proteolysis. Such differences can be predicted from the contrasting effects of these substrates on the conformation of the enzyme.  相似文献   

19.
Conformation of the renin inhibitor peptide, Pro-His-Pro-Phe-His-Phe-Phe-Val-Tyr-Lys (RIP) has been studied in aqueous solution and in lipid bilayers using 500 MHz 1H NMR spectroscopy. Analysis of the NMR parameters indicates that in aqueous solution, RIP exists as a random coil. On incorporation into lipid bilayers, the peptide adopts a rigid and well defined conformation. The N-terminal end is stabilized by the hydrophobic environment of the lipid bilayer. The C-terminal end is located near the lipid-water interface and attains rigidity due to interaction with the phosphate groups of lipids. The observations emphasize the role of environment in stabilizing significantly different conformations of RIP in three different media--D2O, DMSO and lipid bilayers.  相似文献   

20.
Nitric oxide and changes of iron metabolism in exercise   总被引:12,自引:0,他引:12  
Accumulated data imply that exercise itself might not lead to a true iron deficiency or 'sport anaemia' in a healthy athlete who has adequate iron intake. The higher prevalence of iron deficiency anaemia in younger female athletes might be not due to exercise itself, but probably results from dietary choices, inadequate iron intake and menstruation. These factors can also induce iron deficiency or anaemia in the general population. However, exercise does affect iron metabolism, leading to low or sub-optimal iron status. The underlying mechanism is unknown. In this review, recent advances in the study of the effect of exercise on iron metabolism and nitric oxide, and the relationship between nitric oxide and iron status in exercise are discussed. A hypothesis that increased production of nitric oxide might contribute to sub-optimal iron status in exercise is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号