首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatty acid profile of vegetable oils (VOs), together with the poor ability of marine fish to convert polyunsaturated fatty acids (PUFA) to highly unsaturated fatty acids (HUFA), lead to important changes in the nutritional value of farmed fish fed VO, which include increased fat and 18:2n-6 and reduced n-3 HUFA. Echium oil (EO) has a good n-3/n-6 balance as well as an interesting profile with its high content of unusual fatty acids (SDA, 18:4n-3 and GLA, 18:3n-6) that are of increasing pharmacological interest. The effects of substituting 50 % of dietary fish oil (FO) by EO on gilthead seabream (Sparus aurata L.) enterocyte and hepatocyte lipid metabolism were studied. After 4 months of feeding, cell viability, total lipid contents and lipid class compositions were not affected by EO. The cells clearly reflected the fatty acid profile of the EO showing increased SDA, GLA and its elongation product 20:3n-6, and only minorly decreased n-3 HUFA compared to other VO. Metabolism of [1-14C]18:2n-6 and [1-14C]18:3n-3 was also unaffected by EO in terms of total uptake, incorporation, β-oxidation and elongation–desaturation activities.  相似文献   

2.
This study aimed to test the hypothesis that diets containing relatively high amounts of the Delta6 desaturated fatty acids stearidonic acid (STA, 18:4n-3) and gamma-linolenic acid (GLA, 18:3n-6), may be beneficial in salmonid culture. The rationale being that STA and GLA would be better substrates for highly unsaturated fatty acid (HUFA) synthesis as their conversion does not require the activity of the reputed rate-limiting enzyme, fatty acid Delta6 desaturase. Duplicate groups of two Arctic charr (Salvelinus alpinus L.) populations with different feeding habits, that had been reported previously to show differences in HUFA biosynthetic capacity, were fed for 16 weeks on two fish meal based diets containing 47% protein and 21% lipid differing only in the added lipid component, which was either fish oil (FO) or echium oil (EO). Dietary EO had no detrimental effect on growth performance and feed efficiency, mortalities, or liver and flesh lipid contents in either population. The proportions of 18:2n-6, 18:3n-3, 18:3n-6, 18:4n-3, 20:3n-6 and 20:4n-3 in total lipid in both liver and flesh were increased by dietary EO in both populations. However, the percentages of 20:5n-3 and 22:6n-3 were reduced by EO in both liver and flesh in both strains, whereas 20:4n-6 was only significantly reduced in flesh. In fish fed FO, HUFA synthesis from both [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3 was significantly higher in the planktonivorous Coulin charr compared to the demersal, piscivorous Rannoch charr morph. However, HUFA synthesis was increased by EO in Rannoch charr, but not in Coulin charr. In conclusion, dietary EO had differential effects in the two populations of charr, with HUFA synthesis only stimulated by EO in the piscivorous Rannoch morph, which showed lower activities in fish fed FO. However, the hypothesis was not proved as, irrespective of the activity of the HUFA synthesis pathway in either population, feeding EO resulted in decreased tissue levels of n-3HUFA and 20:4n-6. This has been observed previously in salmonids fed vegetable oils, and thus the increased levels of Delta6 desaturated fatty acids in EO did not effectively compensate for the lack of dietary HUFA.  相似文献   

3.
Fish are an important source of highly unsaturated fatty acids (HUFA) such as eicosapentaenoic acid EPA (20:5 n-3) and docosahexaenoic acid DHA (22:6 n-3) and play a significant role in human nutrition. The fatty acyl delta6-desaturase (Δ6 desaturase) is a rate-limiting enzyme in the biosynthetic pathway of highly unsaturated fatty acids (HUFA) that converts polyunsaturated fatty acids (PUFA) such as linoleic (18:2n-6) and α-linolenic (18:3n-3) acids into HUFA. In this study, fatty acyl Δ6 desaturase was identified from pangasius (Pangasianodon hypophthalmus) and further analyzed for sequenced-based characterization and 3D structural conformation. Sequenced-based analysis revealed some important secondary information such as physicochemical property. e.g., isoelectric point, extinction coefficient, aliphatic index, and grand average hydropathy, among others, and also post-translational modification sites were identified. An evolutionary-conserved stretch of amino acid residue and a functionally significant conserved structural ancestor, N-terminal cytochrome b5 and membrane FADS-like superfamily, were identified. Protein association analysis showed a high confidence score with acyl-CoA synthetase, elovl5, elovl2, and phospholipase A2. Herein, we report, for the first time, a 3D native structure of Δ6 desaturase protein by homology modeling approach; molecular docking analysis was performed with linoleic (18:2n-6) and α-linolenic (18:3n-3) acids, which are the two key substrates in the HUFA biosynthetic pathway. This work provides insight into the structural and functional characterization of Δ6 desaturase, which is involved in HUFA biosynthesis as a rate-limiting enzyme.  相似文献   

4.
This study evaluated the effects of season and spatial distribution on the fatty acid composition of Patella depressa gonads and Patella spp. soft body tissue. The results show that the quantitatively most important fatty acids were the saturated fatty acids (SFA) 16:0, 14:0 and 18:0; the monounsaturated fatty acids (MUFA) 18:1(n-7), 18:1(n-9), 16:1(n-7) and 20:1(n-9) and the polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA 20:5(n-3)), and arachidonic acid (ARA 20:4(n-6)). P. depressa and P. ulyssiponensis soft body fatty acid profiles revealed significant differences between sexes; males showed significantly higher percentages of PUFA, highly unsaturated fatty acids (HUFA), (n-3) fatty acids and ARA, while in females significantly higher proportions of MUFA were found. Analysis of variance on the fatty acid composition of P. depressa gonads revealed significant differences between sexes, which were more marked than when the whole body was analysed. Males showed a significantly higher percentage of PUFA, HUFA, fatty acids from the (n-3) and (n-6) series, ARA and EPA, while females were seen to have higher proportions of SFA, MUFA and total fatty acid methyl esters (FAME). Some variability was seen to occur due to shore location and seasons, but these effects were not so obvious.  相似文献   

5.
The highly unsaturated fatty acids (HUFA) of the n-6 and n-3 series are involved in cell signalling in normal and transformed cells and have recently been associated with pathways leading to tumour cell death. The antitumour activity of three HUFA (arachidonic acid, gamma linolenic acid and eicosapentaenoic acid) were studied in glioma cells and tissue. Using five glioma models, including primary cell suspensions prepared from 46 human glioma samples and an in vivo rat C6 glioma model, we obtained evidence that, following exposure to HUFA, either administered into the medium surrounding human glioma cells or in 16 preparations of multicellular spheroids derived from human and rodent glioma cell lines (C6, MOG, U87, U373) or administered intra-tumourally by infusion using osmotic mini-pumps in 48 rats, glioma regression and apoptosis were detected. Additionally, synergy between gamma irradiation and HUFA administration was observed in 13 experiments analyzing C6 glioma cell apoptosis in vitro. These pro-apoptotic and antiproliferative activities were observed using both C18 and C20 fatty acids of the n-6 and n-3 series, but not when saturated and monounsaturated C18 and C20 fatty acid preparations were used. In the glioma infusion model, in addition to the apoptosis detected in glioma tissue infused with HUFA for 3-7 days, preservation of normal neural tissue and vasculature in adjacent brain was observed. Also, there was little evidence of acute inflammatory infiltration in regressing tumours. Our findings suggest that intraparenchymal infusion of HUFA may be effective in stimulating glioma regression.  相似文献   

6.
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.  相似文献   

7.
Atlantic herring larvae ( Clupea harengus ) were fed two enriched Artemia diets with different contents of (n-3) highly unsaturated fatty acids (HUFA), one containing low levels of 20: 5(n-3) and no 22: 6(n-3), the other containing substantial levels of both 20: 5(n-3) and 22: 6(n-3). After 30 days of culture, fatty acid compositions of lipid classes in the heads, bodies and eyes of the larvae were analysed. Fish fed Artemia with the low (n-3) HUFA diet lacking 22: 6(n-3) had lower amounts of total (n-3)HUFA and, in particular, of 22:6(n-3) in individual phospholipids and total neutral lipids of heads, bodies and eyes as compared to fish fed Artemia with high levels of (n-3)HUFA. The amount of 22: 6(n-3) in the fatty acids of phosphatidyl-ethanolamine of eyes was particularly susceptible to dietary depletion. The implications of these findings are discussed, particularly in relation to dietary requirements for 22: 6(n-3) during development of neural tissue in predatory fish iarvae.  相似文献   

8.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

9.
10.
Abstract manganese lipoxygenase (Mn-LO) oxygenates 18:3n-3 and 18:2n-6 to bis-allylic 11S-hydroperoxy fatty acids, which are converted to 13R-hydroperoxy fatty acids. Other unsaturated C(16)-C(22) fatty acids, except 17:3n-3, are poor substrates, possibly because of ineffective enzyme activation (Mn(II)-->Mn(III)) by the produced hydroperoxides. Our aim was to determine whether unsaturated C(16)-C(22) fatty acids were oxidized by Mn(III)-LO. Mn(III)-LO oxidized C(16), C(19), C(20), and C(22) n-3 and n-6 fatty acids. The carbon chain length influenced the position of hydrogen abstraction (n-8, n-5) and oxygen insertion at the terminal or the penultimate 1Z,4Z-pentadienes. Dilinoleoyl-glycerophosphatidylcholine was oxidized by Mn-LO, in agreement with a "tail-first" model. 16:3n-3 was oxidized at the bis-allylic n-5 carbon and at positions n-3, n-7, and n-6. Long fatty acids, 19:3n-3, 20:3n-3, 20:4n-6, 22:5n-3, and 22:5n-6, were oxidized mainly at the n-6 and the bis-allylic n-8 positions (in ratios of approximately 3:2). The bis-allylic hydroperoxides accumulated with one exception, 13-hydroperoxyeicosatetraenoic acid (13-HPETE). Mn(III)-LO oxidized 20:4n-6 to 15R-HPETE ( approximately 60%) and 13-HPETE ( approximately 37%) and converted 13-HPETE to 15R-HPETE. Mn(III)-LO G316A oxygenated mainly 16:3n-3 at positions n-7 and n-6, 19:3n-3 at n-10, n-8, and n-6, and 20:3n-3 at n-10 and n-8. We conclude that Mn-LO likely binds fatty acids tail-first and oxygenates many C(16), C(18), C(20), and C(22) fatty acids to significant amounts of bis-allylic hydroperoxides.  相似文献   

11.
Enzymes that lengthen the carbon chain of polyunsaturated fatty acids are key to the biosynthesis of the highly unsaturated fatty acids, arachidonic, eicosapentaenoic and docosahexaenoic acids from linoleic and alpha-linolenic acids. A Mortierella alpina cDNA polyunsaturated fatty acid elongase sequence identified mammalian, amphibian, zebrafish and insect expressed sequence tags (ESTs) in GenBank. Consensus primers were designed in conserved motifs and used to isolate full length cDNA from livers of several fish species by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded putative open reading frames (ORFs) of 288-294 amino acids that were highly conserved among the fish species. Heterologous expression in yeast, Saccharomyces cerevisiae, demonstrated that all of the ORFs encoded elongases with the ability to lengthen polyunsaturated fatty acid substrates with chain lengths from C18 to C22 and also monounsaturated fatty acids, but not saturated fatty acids. There were differences in the functional competence of the elongases from different fish species. Most of the fish elongases showed a pattern of activity towards different fatty acid substrates in the rank order C18>C20>C22, although the tilapia and turbot elongases had similar activity towards 18:4n-3 and 20:5n-3. The fish elongases generally showed greater activity or similar activities with n-3 than with n-6 homologues, with the exception of the cod enzyme which was more active towards n-6 fatty acids.  相似文献   

12.
To investigate the effect of docosahexaenoic acid (DHA) without other highly unsaturated fatty acids (HUFA) on n-3 and n-6 essential fatty acid (EFA) metabolism and fatty acid composition in mammals, a stable isotope tracer technique was used in adult rats fed diets with or without 1.3% of algal DHA in a base diet containing 15% of linoleic acid and 3% of alpha-linolenic acid over 8 weeks. The rats were administered orally a mixed oil containing 48 mg/kg body weight of deuterated linoleic and alpha-linolenic acids and euthanized at 4, 8, 24, 96, 168, 240, 360 and 600 h after administration of the isotopes. Fatty acid compositions and the concentrations of deuterated precursors and their respective metabolites were determined in rat liver, plasma, heart and brain as a function of time. DHA, docosapentaenoic acid and eicosapentaenoic acid in the n-3 EFA family were significantly increased in all organs tested in the DHA-fed group, ranging from 5% to 200% greater in comparison with the control group. The accumulation of the metabolites, deuterated-DHA and deuterated-docosapentaenoic acid n-6 was greatly decreased by 1.5- to 2.5-fold in the dietary DHA group. In summary, feeding preformed DHA led to a marked increase in n-3 HUFA content of rat organs at the expense of n-6 HUFA and also prevented the accumulation of newly synthesized deuterated end products. This is the first study which has isolated the effects of DHA on the de novo metabolism on both the n-6 and n-3 EFA pathways.  相似文献   

13.
Alpha-linolenic acid (18:3n-3) is essential in the human diet, probably because it is the substrate for the synthesis of longer-chain, more unsaturated n-3 fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) which are required for tissue function. This article reviews the recent literature on 18:3n-3 metabolism in humans, including fatty acid beta-oxidation, recycling of carbon by fatty acid synthesis de novo and conversion to longer-chain polyunsaturated fatty acids (PUFA). In men, stable isotope tracer studies and studies in which volunteers increased their consumption of 18:3n-3 show conversion to 20:5n-3 and 22:5n-3, but limited conversion to 22:6n-3. However, conversion to 18:3n-3 to 20:5n-3 and 22:6n-3 is greater in women compared to men, due possibly to a regulatory effect of oestrogen, while partitioning of 18:3n-3 towards beta-oxidation and carbon recycling was lower than in men. These gender differences may be an important consideration in making dietary recommendations for n-3 PUFA intake.  相似文献   

14.
The lipid content and composition of Nereis (Hediste) diversicolor O. F. Müller (Annelida, Polychaeta, Nereidae) a mud-dwelling, intertidal errant polychaete in the Tagus estuary (Portugal), were examined on the monthly basis by lipid extraction, TLC and capillary GC. In this estuary, N. diversicolor is by far the dominant species among polychaeta and the main food item in the natural diet of several flatfishes. The biochemical elucidation of its lipid structure and distribution throughout the year, described in this study, provides information not only about the physiological role of lipids in the animal under consideration but also about dietary fatty acid requirements of some flatfishes in the wild and under laboratory conditions.The total lipid content varied between a maximum of 19.3% lyophilized dry weight in February (4.4% fresh weight) and a minimum of 6.6% in August (1.9% fresh weight). The major lipid classes were triacylglycerol, phospholipid, free sterol, free fatty acid, sterol ester/wax ester and alkyldiacylglycerol.The fatty acid composition was rather unsaturated with a 1:2 mean ratio of n-3: n-6. The major fatty acids were C160:0, C18:1n-9, C18:2n-6, and C20:5n-3; there were smaller amounts of C180:0, C18:1n-11, C18:1n-7, C18:3n-3, C20:1, C20:2n-6, C20:4n-6, C22:2, C22:5n-3, and many other fatty acids were detected at trace levels. The unsaturation ranged from 36.9 mg/g dry weight in summer to 107.4 mg/g in winter. An accumulation of fatty acids from plant origin was evident, in particular linoleic acid (C18:2n-6), which was quantitatively one of the major fatty acids throughout the year.  相似文献   

15.
Changes in n-3 highly unsaturated fatty acids (HUFA, ≥20 carbons and ≥3 carbon–carbon double bonds) at baseline, during fish oil supplementation (4 weeks) and during washout (8 weeks) were compared in venous plasma, erythrocytes, whole blood and fingertip prick blood (weeks 0, 4, 8 and 12) with additional weekly fingertip prick samples. Correlations between the various blood fractions were slightly stronger when n-3 HUFA status was expressed as the percentage of n-3 HUFA in total HUFA as compared with the sum of EPA and DHA. Increases and decreases in n-3 HUFA were more dramatic in plasma, and EPA responded rapidly (within 1 week) with fish oil supplementation and cessation. Sex differences in the proportions of n-3 HUFA in blood were also apparent at baseline with females (n=7) having a tendency for higher docosahexaenoic acid (DHA, 22:6n-3) relative to eicosapentaenoic acid (EPA, 20:5n-3) and n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) as compared with males (n=9). Further n-3 biomarker research in larger populations is required.  相似文献   

16.
被孢霉的三个菌株Mortierella sp.M10,M13与M14生长在以葡萄糖为碳源、尿素为氮源的液体培养基中,所得到的菌丝体内堆积含γ-亚麻酸的油脂。油脂产率以M10菌株为高,而油脂中的γ-亚麻酸含量却以M14菌株为高。这种油脂的脂肪酸中,所含饱和脂肪酸主要有豆蔻酸(C14:0),棕榈酸(C16:0)和硬脂酸(C18:0);所含不饱和脂肪酸主要有棕榈油酸(C16:1),油酸(C18:1),亚油酸(C18:2)以及γ-亚麻酸(C18:3,n-6)。上述被孢霉菌株的培养物接种在含葡萄糖、尿素的培养基中生长大约48小时后,菌丝体顶端细胞形成鼓胀球状,此后仍继续胀大。菌体细胞形态的这种特异变化,可能与胞内油脂的累积有关。  相似文献   

17.
The synthesis of phospholipids in mammalian cells is regulated by the availability of three critical precursor pools: those of choline, cytidine triphosphate and diacylglycerol. Diacylglycerols containing polyunsaturated fatty acids (PUFAs) apparently are preferentially utilized for phosphatide synthesis. PUFAs are known to play an important role in the development and function of mammalian brains. We therefore studied the effects of unsaturated, monounsaturated and polyunsaturated fatty acids on the overall rates of phospholipid biosynthesis in PC12 rat pheochromocytoma cells. Docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (AA, 20:4n-6) all significantly stimulated the incorporation of (14)C-choline into total cellular phospholipids. In contrast, monounsaturated oleic acid (OA) and the saturated palmitic (PA) and stearic (SA) acids did not have this effect. The action of DHA was concentration-dependent between 5 and 50 microM; it became statistically significant by 3 h after DHA treatment and then increased over the ensuing 3 h. DHA was preferentially incorporated into phosphatidylethanolamine (PE) and phosphatidylserine (PS), while AA predominated in phosphatidylcholine (PC).  相似文献   

18.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

19.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

20.
In the Zellweger syndrome where peroxisomes are absent, extremely long fatty acids (24:0 and 26:0) accumulate in tissues suggesting that these fatty acids are normally beta-oxidized in the peroxisomes. Previous studies with rat hepatocytes suggest that peroxisomes are also important in oxidation of C22 unsaturated fatty acids. This study shows that cultured fibroblasts from normal human controls shorten [14-14C]erucic acid (22:1(n-9)) to oleic acid (18:1(n-9)) efficiently while Zellweger fibroblasts are deficient in chain-shortening. [2-14C]Adrenic acid (22:4(n-6)) is oxidized in control fibroblasts probably by chain-shortening to arachidonic acid (20:4(n-6)). Only a little adrenic acid is oxidized in Zellweger fibroblasts. Linolenic acid (18:3(n-3)) is desaturated and chain-elongated in both control and Zellweger fibroblasts. The results support the view that peroxisomes play a normal physiological role in the shortening of C22 unsaturated fatty acids and that this function is deficient in Zellweger fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号