首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N-terminal RNA-binding domain of the human U1A protein (RBD1) undergoes local conformational changes upon binding to its target RNA. Here, the wild-type RBD1 and two mutants are examined with molecular dynamics simulations that are analyzed using the reorientational eigenmode dynamics (RED) formalism. The results reveal changes in the magnitude and extent of coupled intra-domain motions resulting from single amino acid substitutions. Interpretation of the novel RED results and corresponding NMR relaxation data suggests that the loss of collective motions in the mutants could account for their weak RNA-binding.  相似文献   

2.
Intramolecular dynamics of a 14-mer RNA hairpin including GCAA tetraloop was investigated by (13)C NMR relaxation. R(1) and R(1rho) relaxation rates were measured for all protonated base carbons as well as for C1' carbons of ribose sugars at several magnetic field strengths. The data has been interpreted in the framework of modelfree analysis [G. Lipari and A. Szabo. J Am Chem Soc 104, 4546-4559 (1982); G. Lipari and A. Szabo. J Am Chem Soc 104, 4559-4570 (1982)] characterizing the internal dynamics of the molecule by order parameters and correlation times for fast motions on picosecond to nanosecond time scale and by contributions of the chemical exchange. The fast dynamics reveals a rather rigid stem and a significantly more flexible loop. The cytosine and the last adenine bases in the loop as well as all the loop sugars exhibit a significant contribution of conformational equilibrium on microsecond to millisecond time scale. The high R(1rho) values detected on both base and sugar moieties of the loop indicate coordinated motions in this region. A semiquantitative analysis of the conformational equilibrium suggests the exchange rates on the order of 10(4) s(-1). The results are in general agreement with dynamics studies of GAAA loops by NMR relaxation and fluorescent spectroscopy and support the data on the GCAA loop dynamics obtained by MD simulations.  相似文献   

3.
The popular model-free approach to analyze NMR relaxation measurements has been examined using artificial amide (15)N relaxation data sets generated from a 10 nanosecond molecular dynamics trajectory of a dihydrofolate reductase ternary complex in explicit water. With access to a detailed picture of the underlying internal motions, the efficacy of model-free analysis and impact of model selection protocols on the interpretation of NMR data can be studied. In the limit of uncorrelated global tumbling and internal motions, fitting the relaxation data to the model-free models can recover a significant amount of quantitative information on the internal dynamics. Despite a slight overestimation, the generalized order parameter is quite accurately determined. However, the model-free analysis appears to be insensitive to the presence of nanosecond time scale motions with relatively small magnitude. For such cases, the effective correlation time can be significantly underestimated. As a result, proteins appear to be more rigid than they really are. The model selection protocols have a major impact on the information one can reliably obtain. The commonly employed protocol based on step-up hypothesis testing has severe drawbacks of oversimplification and underfitting. The consequences are that the order parameter is more severely overestimated and the correlation time more severely underestimated. Instead, model selection based on Bayesian Information Criteria (BIC), recently introduced to the model-free analysis by d'Auvergne and Gooley (2003), provides a better balance between bias and variance. More appropriate models can be selected, leading to improved estimate of both the order parameter and correlation time. In addition, the computational cost is significantly reduced and subjective parameters such as the significance level are unnecessary.  相似文献   

4.
Nuclear magnetic resonance (NMR) spin relaxation experiments currently probe molecular motions on timescales from picoseconds to nanoseconds. The detailed interpretation of these motions in atomic detail benefits from complementarity with the results from molecular dynamics (MD) simulations. In this mini-review, we describe the recent developments in experimental techniques to study the backbone dynamics from 15N relaxation and side-chain dynamics from 13C relaxation, discuss the different analysis approaches from model-free to dynamics detectors, and highlight the many ways that NMR relaxation experiments and MD simulations can be used together to improve the interpretation and gain insights into protein dynamics.  相似文献   

5.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   

6.
Shajani Z  Varani G 《Biopolymers》2007,86(5-6):348-359
RNA and DNA molecules experience motions on a wide range of time scales, ranging from rapid localized motions to much slower collective motions of entire helical domains. The many functions of RNA in biology very often require this molecule to change its conformation in response to biological signals in the form of small molecules, proteins or other nucleic acids, whereas local motions in DNA may facilitate protein recognition and allow enzymes acting on DNA to access functional groups on the bases that would otherwise be buried in Watson-Crick base pairs. Although these statements make a compelling case to study the sequence dependent dynamics in nucleic acids, there are few residue-specific studies of nucleic acid dynamics. Fortunately, NMR studies of dynamics of nucleic acids and nucleic acids-protein complexes are gaining increased attention. The aim of this review is to provide an update of the recent progress in studies of nucleic acid dynamics by NMR based on the application of solution relaxation techniques.  相似文献   

7.
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.  相似文献   

8.
Model-free parameters obtained from nuclear magnetic resonance (NMR) relaxation experiments and molecular dynamics (MD) simulations commonly are used to describe the intramolecular dynamical properties of proteins. To assess the relative accuracy and precision of experimental and simulated model-free parameters, three independent data sets derived from backbone 15N NMR relaxation experiments and two independent data sets derived from MD simulations of Escherichia coli ribonuclease HI are compared. The widths of the distributions of the differences between the order parameters for pairs of NMR data sets are congruent with the uncertainties derived from statistical analyses of individual data sets; thus, current protocols for analyzing NMR data encapsulate random uncertainties appropriately. Large differences in order parameters for certain residues are attributed to systematic differences between samples for intralaboratory comparisons and unknown, possibly magnetic field-dependent, experimental effects for interlaboratory comparisons. The widths of distributions of the differences between the order parameters for two NMR sets are similar to widths of distributions for an NMR and an MD set or for two MD sets. The linear correlations between the order parameters for an MD set and an NMR set are within the range of correlations observed between pairs of NMR sets. These comparisons suggest that the NMR and MD generalized order parameters for the backbone amide N—H bond vectors are of comparable accuracy for residues exhibiting motions on a fast time scale (<100 ps). Large discrepancies between NMR and MD order parameters for certain residues are attributed to the occurrence of “rare” motional events over the simulation trajectories, the disruption of an element of secondary structure in one of the simulations, and lack of consensus among the experimental data sets. Consequently, (easily detectable) severe distortions of local protein structure and infrequent motional events in MD simulations appear to be the most serious artifacts affecting the accuracy and precision, respectively, of MD order parameters relative to NMR values. In addition, MD order parameters for motions on a fast (<100 ps) timescale are more precisely determined than their NMR counterparts, thereby permitting more detailed dynamic characterization of biologically important residues by MD simulation than is sometimes possible by experimental methods. Proteins 28:481–493, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Heteronuclear NMR relaxation measurements and hydrogen exchange data have been used to characterize protein dynamics in the presence or absence of stabilizing solutes from hyperthermophiles. Rubredoxin from Desulfovibrio gigas was selected as a model protein and the effect of diglycerol phosphate on its dynamic behaviour was studied. The presence of 100 mM diglycerol phosphate induces a fourfold increase in the half-life for thermal denaturation of D. gigas rubredoxin. A model-free analysis of the protein backbone relaxation parameters shows an average increase of generalized order parameters of 0.015 reflecting a small overall reduction in mobility of fast-scale motions. Hydrogen exchange data acquired over a temperature span of 20 degrees C yielded thermodynamic parameters for the structural opening reactions that allow for the exchange. This shows that the closed form of the protein is stabilized by an additional 1.6 kJ x mol(-1) in the presence of the solute. The results seem to indicate that the stabilizing effect is due mainly to a reduction in mobility of the slower, larger-scale motions within the protein structure with an associated increase in the enthalpy of interactions.  相似文献   

10.
The role of structure and dynamics in mechanisms for RNA becomes increasingly important. Computational approaches using simple dynamics models have been successful at predicting the motions of proteins and are often applied to ribonucleo-protein complexes but have not been thoroughly tested for well-packed nucleic acid structures. In order to characterize a true set of motions, we investigate the apparent motions from 16 ensembles of experimentally determined RNA structures. These indicate a relatively limited set of motions that are captured by a small set of principal components (PCs). These limited motions closely resemble the motions computed from low frequency normal modes from elastic network models (ENMs), either at atomic or coarse-grained resolution. Various ENM model types, parameters, and structure representations are tested here against the experimental RNA structural ensembles, exposing differences between models for proteins and for folded RNAs. Differences in performance are seen, depending on the structure alignment algorithm used to generate PCs, modulating the apparent utility of ENMs but not significantly impacting their ability to generate functional motions. The loss of dynamical information upon coarse-graining is somewhat larger for RNAs than for globular proteins, indicating, perhaps, the lower cooperativity of the less densely packed RNA. However, the RNA structures show less sensitivity to the elastic network model parameters than do proteins. These findings further demonstrate the utility of ENMs and the appropriateness of their application to well-packed RNA-only structures, justifying their use for studying the dynamics of ribonucleo-proteins, such as the ribosome and regulatory RNAs.  相似文献   

11.
The cross-peaks of 1H-NOESY spectra at different time delays are compared to a mode-coupling diffusion (MCD) calculation, including the evaluation of the full 1H relaxation matrix, in the case of a 23 nucleotide fragment of the stem-loop SL1 domain of HIV-1Lai genomic RNA mutated in a single position. The MCD theory gives significant agreement with 1H relaxation experiments enabling a thorough understanding of the differential local dynamics along the sequence and particularly of the dynamics of nucleotides in the stem and in the loop. The differential dynamics of this hairpin structure is important in directing the dimerization of the retroviral genome, a fundamental step in the infectious process. The demonstration of a reliable use of time dependent NOE cross-peaks, largely available from NMR solution structure determination, coupled to MCD analysis, to probe the local dynamics of biological macromolecules, is a result of general interest of this paper.  相似文献   

12.
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 μs time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.  相似文献   

13.
14.
Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by (15)N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2- sec -4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature dependence of the motional parameters.  相似文献   

15.
Temiz NA  Meirovitch E  Bahar I 《Proteins》2004,57(3):468-480
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis of (15)N-NMR relaxation data. The AMPbd and LID domains of AKeco execute in solution large amplitude motions associated with the catalytic reaction Mg(+2)*ATP + AMP --> Mg(+2)*ADP + ADP. Two sets of correlation times and order parameters were determined by NMR/SRLS for AKeco, attributed to slow (nanoseconds) motions with correlation time tau( perpendicular) and low order parameters, and fast (picoseconds) motions with correlation time tau( parallel) and high order parameters. The structural connotation of these patterns is examined herein by subjecting AKeco and AKeco*AP(5)A to GNM analysis, which yields the dynamic spectrum in terms of slow and fast modes. The low/high NMR order parameters correlate with the slow/fast modes of the backbone elucidated with GNM. Likewise, tau( parallel) and tau( perpendicular) are associated with fast and slow GNM modes, respectively. Catalysis-related domain motion of AMPbd and LID in AKeco, occurring per NMR with correlation time tau( perpendicular), is associated with the first and second collective slow (global) GNM modes. The ANM-predicted deformations of the unliganded enzyme conform to the functional reconfiguration induced by ligand-binding, indicating the structural disposition (or potential) of the enzyme to bind its substrates. It is shown that NMR/SRLS and GNM/ANM analyses can be advantageously synthesized to provide insights into the molecular mechanisms that control biological function.  相似文献   

16.
17.
The amplitude of protein backbone NH group motions on a time-scale faster than molecular tumbling may be determined by analysis of (15)N NMR relaxation data according to the Lipari-Szabo model free formalism. An internet-accessible database has been compiled containing 1855 order parameters from 20 independent NMR relaxation studies on proteins whose three-dimensional structures are known. A series of statistical analyses has been performed to identify relationships between the structural features and backbone dynamics of these proteins. Comparison of average order parameters for different amino acid types indicates that amino acids with small side-chains tend to have greater backbone flexibility than those with large side-chains. In addition, the motions of a given NH group are also related to the sizes of the neighboring amino acids in the primary sequence. The secondary structural environment appears to influence backbone dynamics relatively weakly, with only subtle differences between the order parameter distributions of loop structures and regular hydrogen bonded secondary structure elements. However, NH groups near helix termini are more mobile on average than those in the central regions of helices. Tertiary structure influences are also relatively weak but in the expected direction, with more exposed residues being more flexible on average than residues that are relatively inaccessible to solvent.  相似文献   

18.
The backbone dynamics of the four-helical bundle cytokine leukemia inhibitory factor (LIF) have been investigated using 15N NMR relaxation and amide proton exchange measurements on a murine-human chimera, MH35-LIF. For rapid backbone motions (on a time scale of 10 ps to 100 ns), as probed by 15N relaxation measurements, the dynamics parameters were calculated using the model-free formalism incorporating the model selection approach. The principal components of the inertia tensor of MH35-LIF, as calculated from its NMR structure, were 1:0.98:0.38. The global rotational motion of the molecule was, therefore, assumed to be axially symmetric in the analysis of its relaxation data. This yielded a diffusion anisotropy D(parallel)/D(perpendicular) of 1.31 and an effective correlation time (4D(perpendicular) + 2D(parallel))(-1) of 8.9 ns. The average values of the order parameters (S2) for the four helices, the long interhelical loops, and the N-terminus were 0.91, 0.84, and 0.65, respectively, indicating that LIF is fairly rigid in solution, except at the N-terminus. The S2 values for the long interhelical loops of MH35-LIF were higher than those of their counterparts in short-chain members of the four-helical bundle cytokine family. Residues involved in LIF receptor binding showed no consistent pattern of backbone mobilities, with S2 values ranging from 0.71 to 0.95, but residues contributing to receptor binding site III had relatively lower S2 values, implying higher amplitude motions than for the backbone of sites I and II. In the relatively slow motion regime, backbone amide exchange measurements showed that a number of amides from the helical bundle exchanged extremely slowly, persisting for several months in 2H2O at 37 degrees C. Evidence for local unfolding was considered, and correlations among various structure-related parameters and the backbone amide exchange rates were examined. Both sets of data concur in showing that LIF is one of the most rigid four-helical bundle cytokines.  相似文献   

19.
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

20.
The widespread importance of induced fit and order-disorder transition in RNA recognition by proteins and small molecules makes it imperative that RNA motional properties are characterized quantitatively. Until now, however, very few studies have been dedicated to the systematic characterization of RNA motion and to their changes upon protein or small-molecule binding. The U1A protein-RNA complexes provide some of the best-studied examples of the role of RNA motional changes upon protein binding. Here, we report (13)C NMR relaxation studies of base and ribose dynamics for the RNA internal loop target of human U1A protein located within the 3'-untranslated region (3'-UTR) of the mRNA coding for U1A itself. We also report the semi-quantitative analysis of both fast (nano- to picosecond) and intermediate (micro- to millisecond) motions for this paradigmatic RNA system. We measure (13)C T(1), T(1rho) and heteronuclear nuclear Overhauser effects (NOEs) for sugar and base nuclei, as well as the power dependence of T(1rho) at 500 MHz and 750 MHz, and analyze these results using the model-free formalism. The results provide a much clearer picture of the type of motions experienced by this RNA in the absence of the protein than was provided by the analysis of the structure based solely on NOEs and scalar couplings. They define a model where the RNA internal loop region "breathes" on a micro- to millisecond timescale with respect to the double-helical regions. Superimposed on this slower motion, the residues at the very tip of the loop undergo faster (nano- to picosecond) motions. We hypothesize that these motions allow the RNA to sample multiple conformations so that the protein can select a structure within the ensemble that optimizes intermolecular contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号