首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of Halobacterium halobium (residues 1-36) solubilized in the mixture of methanol-chloroform (1:1), 0.1 M LiClO4 or in perdeuteriated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. Most of the resonances in 1H-NMR spectra of fragment A were assigned using DQF-COSY, TOCSY and NOESY spectra. Deuterium exchange rates for amide protons were measured in series of NOESY spectra. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in mixture of organic solvents and SDS micelles, respectively. The sA structure was determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus. These structures have the right-handed alpha-helical region from Pro-8 to Met-32 with root mean square deviation (RMSD) of 0.25 A between back bone heavy atoms and fit well with Pro-8 to Met-32 alpha-helical region in electron cryo-microscopy (ECM) model of bacteriorhodopsin [4]. The C-terminal region Gly-33-Asp-36 is disordered in both milieus, while N-terminal region Ala-2-Gly-6 in organic solvents has a fixed structure (RMSD of 0.25 A) stabilized by the Thr-5 NH...O=C Gln-3 and Ile-4 NH...O = C Ala-2 hydrogen bonds. This region of sA in SDS micelles has disordered structure with RMSD of 1.44 A for back bone heavy atoms. Torsion angles chi 1 of sA were unequivocally determined for 72% of side chains in the alpha-helical region and are identical in both milieus.  相似文献   

2.
The spatial structure of a synthetic peptide, an analogue of the membrane spanning segment B (residues 34-65) of bacterioopsin from Halobacterium halobium, has been refined. Backbone torsion angles were derived from intensities of short-range interproton NOEs. These, together with a complete set of the NOEs integral intensities formed the basis for the three-dimensional structure refinement by the energy minimization with consideration of NOE penalty functions. Analysis indicates the right-handed alpha-helical conformation of segment B extending from Asp-38 to Tyr-64 with a kink of the helical axis (27 degrees) at Pro-50. The most stable region with an average root-mean-square deviation of 0.43 A between the backbone atoms includes residues 42-60 in six energy refined structures. The N-terminal part of segment B (residues 34-37) has no ordered conformation. The inferred structure is in close agreement with the electron cryomicroscopy structure of bacteriorhodopsin, differing from it in conformations of most of the side chains.  相似文献   

3.
546 NOESY cross-peak volumes were measured in the two-dimensional NOESY spectrum of proteolytic fragment 163-231 of bacterioopsin in organic solution. These data and 42 detected hydrogen bonds were applied for determining the peptide spatial structure. The fold of the polypeptide chain was determined by local structure analysis, a distance geometry approach and systematic search for energetically allowed side-chain rotamers which are consistent with experimental NOESY cross-peak volumes. The effective rotational correlation time of 6 ns for the molecule was evaluated from optimization of the local structure to meet NOE data and from the dependence on mixing time of the NiH/Ci alpha H cross-peak volumes of the residues in alpha-helical conformation. The resulting structure has two well defined alpha-helical regions, 168-191 and 198-227, with root-mean-square deviation 44 pm and 69 pm, respectively, between the backbone atoms in 14 final energy refined conformations. The alpha-helices correspond to transmembrane segments F and G of bacteriorhodopsin. The segment F contains proline 186, which introduces a kink of about 25 degrees with a disruption of the hydrogen bond with the NH group of the following residue. The segments are connected by a flexible loop region 192-197. Torsion angles chi 1 are unequivocally defined for 62% of side chains in the alpha-helices but half of them differ from electron cryo-microscopy (ECM) model of bacteriorhodopsin, apparently because of the low resolution of ECM. Nevertheless, the F and G segments can be packed as in the ECM model and with side-chain conformations consistent with all NMR data in solution.  相似文献   

4.
Several complementary NMR approaches were used to study the interaction of mastoparan, a 14-residue peptide toxin from wasp venom, with lipid membranes. First, the 3D structure of mastoparan was determined using 1H-NMR spectroscopy in perdeuterated (SDS-d25) micelles. NOESY experiments and distance geometry calculations yielded a straight amphiphilic alpha-helix with high-order parameters, and the chemical shifts of the amide protons showed a characteristic periodicity of 3-4 residues. Secondly, solid-state 2H-NMR spectoscopy was used to describe the binding of mastoparan to lipid bilayers, composed of headgroup-deuterated dimyristoylglycerophosphocholine (DMPC-d4) and dimyristoylphosphatidylglycerol (DMPG). By correlating the deuterium quadrupole splittings of the alpha-segments and beta-segments, it was possible to differentiate the electrostatically induced structural response of the choline headgroup from dynamic effects induced by the peptide. A partial phase separation was observed, leading to a DMPG-rich phase and a DMPG-depleted phase, each containing some mastoparan. Finally, the insertion and orientation of a specifically 15N-labeled mastoparan (at position Ala10) in the bilayer environment was investigated by solid-state 15N-NMR spectroscopy, using macroscopically oriented samples. Two distinct orientational states were observed for the mastoparan helix, namely an in-plane and a trans-membrane alignment. The two populations of 90% in-plane and 10% trans-membrane helices are characterized by a mosaic spread of +/- 30 degrees and +/- 10 degrees, respectively. The biological activity of mastoparan is discussed in terms of a pore-forming model, as the peptide is known to be able to induce nonlamellar phases and facilitate a flip-flop between the monolayers.  相似文献   

5.
M Akke  T Drakenberg  W J Chazin 《Biochemistry》1992,31(4):1011-1020
The three-dimensional solution structure of native, intact porcine calbindin D9k has been determined by distance geometry and restrained molecular dynamics calculations using distance and dihedral angle constraints obtained from 1H NMR spectroscopy. The protein has a well-defined global fold consisting of four helices oriented in a pairwise antiparallel manner such that two pairs of helix-loop-helix motifs (EF-hands) are joined by a linker segment. The two EF-hands are further coupled through a short beta-type interaction between the two Ca(2+)-binding loops. Overall, the structure is very similar to that of the highly homologous native, minor A form of bovine calbindin D9k determined by X-ray crystallography [Szebenyi, D. M. E., & Moffat, K. (1986) J. Biol. Chem. 261, 8761-8776]. A model structure built from the bovine calbindin D9k crystal structure shows several deviations larger than 2 A from the experimental distance constraints for the porcine protein. These structural differences are efficiently removed by subjecting the model structure to the experimental distance and dihedral angle constraints in a restrained molecular dynamics protocol, thereby generating a model that is very similar to the refined distance geometry derived structures. The N-terminal residues of the intact protein that are absent in the minor A form appear to be highly flexible and do not influence the structure of other regions of the protein. This result is important because it validates the conclusions drawn from the wide range of studies that have been carried out on minor A forms rather than the intact calbindin D9k.  相似文献   

6.
Proteolytic fragment 163-231 of bacterioopsin was isolated from Halobacterium halobium purple membrane treated with NaBH4 and papain under nondenaturing conditions. Two-dimensional 1H-NMR spectra of (163-231)-bacterioopsin solubilized in chloroform/methanol (1:1), 0.1 M LiClO4 indicated the existence of one predominant conformation. Most of the resonances in the 1H-NMR spectra of (163-231)-bacterioopsin were assigned by two-dimensional techniques. Two extended right-handed alpha-helical regions Ala168-Ile191 and Asn202-Arg227 were identified on the basis of NOE connectivities and deuterium exchange rates. The N-terminal part of the peptide is flexible and the region of Gly192-Leu201 adopts a specific conformation. The protons of OH groups of Thr178, Ser183 and Ser214 slowly exchange with solvent, and side-chain conformations of these residues, as evaluated by NOE connectivities of OH protons, are optimal for the formation of hydrogen bonds between OH and backbone carbonyl groups.  相似文献   

7.
Transportan is a 27-residue peptide (GWTLN SAGYL LGKIN LKALA ALAKK IL-amide) which has the ability to penetrate into living cells carrying a hydrophilic load. Transportan is a chimeric peptide constructed from the 12 N-terminal residues of galanin in the N-terminus with the 14-residue sequence of mastoparan in the C-terminus and a connecting lysine. Circular dichroism studies of transportan and mastoparan show that both peptides have close to random coil secondary structure in water. Sodium dodecyl sulfate (SDS) micelles induce 60% helix in transportan and 75% helix in mastoparan. The 600 MHz (1)H NMR studies of secondary structure in SDS micelles confirm the helix in mastoparan and show that in transportan the helix is localized to the mastoparan part. The less structured N-terminus of transportan has a secondary structure similar to that of the same sequence in galanin [Ohman, A., et al. (1998) Biochemistry 37, 9169-9178]. The position of mastoparan and transportan relative to the SDS micelle surface was studied by adding spin-labeled 5-doxyl- or 12-doxyl-stearic acid or Mn2+ to the peptide/micelle system. The combined results show that the peptides are for the most part buried in the SDS micelles. Only the C-terminal parts of both peptides and the central segment connecting the two parts of transportan are clearly surface exposed. For mastoparan, the secondary chemical shifts of the amide protons were found to vary periodically and display a pattern almost identical to those reported for mastoparan in phospholipid bicelles [Vold, R., et al. (1997) J. Biomol. NMR 9, 329-335], indicating similar structures and interactions in the two membrane-mimicking environments.  相似文献   

8.
The three-dimensional solution structure of apo-neocarzinostatin has been resolved from nuclear magnetic resonance spectroscopy data. Up to 1034 constraints were used to generate an initial set of 45 structures using a distance geometry algorithm (DSPACE). From this set, ten structures were subjected to refinement by restrained energy minimization and molecular dynamics. The average atomic root mean square deviations between the final ten structures and the mean structure obtained by averaging their coordinates run from 0.085 nm for the best defined beta-sheet regions of the protein to 0.227 nm for the side chains of the most flexible loops. The solution structure of apo-neocarzinostatin is closely similar to that of the related proteins, macromomycin and actinoxanthin. It contains a seven-stranded antiparallel beta-barrel which forms, together with two external loops, a deep cavity that is the chromophore binding site. It is noteworthy that aromatic side chains extend into the binding cleft. They may be responsible for the stabilization of the holo-protein complex and for the chromophore specificity within the antitumoral family.  相似文献   

9.
We have applied computational procedures that utilize nmr data to model the solution conformation of ferrichrome, a rigid microbial iron transport cyclohexapeptide of known x-ray crystallographic structure [D. van der Helm et al. (1980) J. Am. Chem. Soc. 102, 4224-4231]. The Al3+ and Ga3+ diamagnetic analogues, alumichrome and gallichrome, dissolved in d6-dimethylsulfoxide (d6-DMSO), were investigated via one- and two-dimensional 1H-nmr spectroscopy at 300, 600, and 620 MHz. Interproton distance constraints derived from proton Overhauser experiments were input to a distance geometry algorithm [T. F. Havel and K. Wüthrich (1984) Bull. Math. Biol. 46, 673-691] in order to generate a family of ferrichrome structures consistent with the experimental data. These models were subsequently optimized through restrained molecular dynamics/energy minimization [B. R. Brooks et al. (1983) J. Comp. Chem. 4, 187-217]. The resulting structures were characterized in terms of relative energies and conformational properties. Computations based on integration of the generalized Bloch equations for the complete molecule, which include the 14N-1H dipolar interaction, demonstrate that the x-ray coordinates reproduce the experimental nuclear Overhauser effect time courses very well, and indicate that there are no significant differences between the crystalline and solution conformations of ferrichrome. A similar study of the metal free peptide, deferriferrichrome, suggests that at least two conformers are present in d6-DMSO at 23 degrees C. Both are different from the ferrichrome structure and explain, through conformational averaging, the observed amide NH and CH alpha multiplet splittings. The occurrence of interconverting peptide backbone conformations yields an increased number of sequential NH-CH alpha and NH-NH Overhauser connectivities, which reflects the mean value of r-6 dependence of the dipolar interaction. Our results support the idea that, in the case of structurally rigid peptides, moderately accurate distance constraints define a conformational subspace encompassing the "true" structure, and that energy considerations reduce the size of this subspace. For flexible peptides, however, the straight-forward approach can be misleading since the nmr parameters are averaged over substantially different conformational states.  相似文献   

10.
The structure of endothelin-1 (ET-1), an endothelial cell-derived peptide with vasoconstricting activity, was determined in an aqueous solution by means of a combination of NMR and distance geometry calculations. The resulting structure is characterized by an alpha-helical conformation in the sequence region, Lys9-Cys15. Furthermore, an extended structure and a turn structure exist in the Cys1-Ser4 and Ser5-Asp8 regions respectively, and no preferred conformation was found for the C-terminal part of the peptide which was not uniquely constrained by the NMR data. These structural elements, the alpha-helical structure in the sequence portion, Cys-X-X-X-Cys, and the extended structure in Cys-X-Cys, are homologous to those found commonly in several neurotoxic peptides.  相似文献   

11.
Spinigerin is a linear antibacterial peptide derived from a termite insect. It consists of 25 amino acids and is devoid of cysteines. Spinigerin displays good lytic activities against Gram-positive and Gram-negative bacteria, but has no hemolytic activities against human erythrocytes. In this study, we present a three-dimensional solution structure of spinigerin in SDS micelles. According to CD data spinigerin has an alpha-helical conformation in the presence of TFE, DPC micelles, and SDS micelles. The three-dimensional structure of spinigerin as determined by NMR spectroscopy contains a stable alpha-helix from Lys4 to Thr23. Spinigerin (4-21), an 18-residue fragment from Lys4 to Leu21, contains a similar content of alpha-helical structure compared to native spinigerin and was found to retain antibacterial activity, too. Therefore, this alpha-helical structure and the strong electrostatic attraction between four Lys and three Arg residues in spinigerin and the negatively charged polar head groups of the phospholipids on the membrane surface play important roles in disrupting membrane and subsequent cell death.  相似文献   

12.
The spatial structure of duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) having a N-(2-oxyethyl)-phenazinium residue covalently linked with the 5'-terminal phosphate of the heptanucleotide was studied by means of one- and two-dimensional 1H-NMR spectroscopy. The resonances of phenazinium protons, ethylenediamine linker protons, as well as, oligonucleotide H5/H6/H8/CH3 base protons and H1',H2'a, H2'b, H3', H4' deoxyribose protons have been assigned by means of 1H-COSY, 1H-NOESY and 1H-13C-COSY. The presence of the phenazine residue in duplex causes an additional imino proton signal of the terminal (G-7).(C-1) base pair, suggesting a higher stability of the duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) as compared to the unmodified duplex pd(CCAAACA).pd(TGTTTGGC). Analysis of NOE interactions between protons of the dye and the oligonucleotides show the phenazinium polycyclic system to intercalate between G-7 and C-8 residues of the octanucleotide.  相似文献   

13.
Nanga RP  Brender JR  Xu J  Veglia G  Ramamoorthy A 《Biochemistry》2008,47(48):12689-12697
Disruption of the cellular membrane by the amyloidogenic peptide IAPP (or amylin) has been implicated in beta-cell death during type 2 diabetes. While the structure of the mostly inert fibrillar form of IAPP has been investigated, the structural details of the highly toxic prefibrillar membrane-bound states of IAPP have been elusive. A recent study showed that a fragment of IAPP (residues 1-19) induces membrane disruption to a similar extent as the full-length peptide. However, unlike the full-length IAPP peptide, IAPP(1-19) is conformationally stable in an alpha-helical conformation when bound to the membrane. In vivo and in vitro measurements of membrane disruption indicate the rat version of IAPP(1-19), despite differing from hIAPP(1-19) by the single substitution of Arg18 for His18, is significantly less toxic than hIAPP(1-19), in agreement with the low toxicity of the full-length rat IAPP peptide. To investigate the origin of this difference at the atomic level, we have solved the structures of the human and rat IAPP(1-19) peptides in DPC micelles. While both rat and human IAPP(1-19) fold into similar mostly alpha-helical structures in micelles, paramagnetic quenching NMR experiments indicate a significant difference in the membrane orientation of hIAPP(1-19) and rIAPP(1-19). At pH 7.3, the more toxic hIAPP(1-19) peptide is buried deeper within the micelle, while the less toxic rIAPP(1-19) peptide is located at the surface of the micelle. Deprotonating H18 in hIAPP(1-19) reorients the peptide to the surface of the micelle. This change in orientation is in agreement with the significantly reduced ability of hIAPP(1-19) to cause membrane disruption at pH 6.0. This difference in peptide topology in the membrane may correspond to similar topology differences for the full-length human and rat IAPP peptides, with the toxic human IAPP peptide adopting a transmembrane orientation and the nontoxic rat IAPP peptide bound to the surface of the membrane.  相似文献   

14.
The orientation of the motional axis of (-)-delta 9-tetrahydrocannabinol in dipalmitoylphosphatidylcholine model membrane was calculated from the 2H quadrupolar splittings (delta nu Q) of individual deuterons strategically located on the cannabinoid tricyclic component. The molecule assumes an orientation in which its long axis is nearly perpendicular to the phospholipid chains and its most ordered axis is almost in the plane of the aromatic ring. This 'awkward' cannabinoid orientation in the membrane presumably occurs in order to allow the phenolic hydroxyl group to direct itself towards the polar bilayer interface.  相似文献   

15.
The three-dimensional structure of human [113Cd7]metallothionein-2 was determined by nuclear magnetic resonance spectroscopy in solution. Sequence-specific 1H resonance assignments were obtained using the sequential assignment method. The input for the structure calculations consisted of the metal-cysteine co-ordinative bonds identified with heteronuclear correlation spectroscopy, 1H-1H distance constraints from nuclear Overhauser enhancement spectroscopy, and spin-spin coupling constants 3JHN alpha and 3J alpha beta. The molecule consists of two domains, the beta-domain including amino acid residues 1 to 30 and three metal ions, and the alpha-domain including residues 31 to 61 and four metal ions. The nuclear magnetic resonance data present no evidence for a preferred relative orientation of the two domains. The polypeptide-to-metal co-ordinative bonds in human metallothionein-2 are identical to those in the previously determined solution structures of rat metallothionein-2 and rabbit metallothionein-2a, and the polypeptide conformations in the three proteins are also closely similar.  相似文献   

16.
Detailed biophysical studies have been carried out on echistatin, a member of the disintegrin family of small, cysteine-rich, RGD-containing proteins, isolated from the venom of the saw-scaled viper Echis carinatus. Analysis of circular-dichroism spectra indicates that, at 20 degrees C, echistatin contains no alpha-helix but contains mostly beta-turns and beta-sheet. Two isobestic points are observed as the temperature is raised, the conformational changes associated with that observed between 40 degrees C and 72 degrees C being irreversible. Raman spectra also indicate considerable beta-turn and beta-sheet (20%) structure and an absence of alpha-helical structure. Three of the four disulphide bridges are shown to be in an all-gauche conformation, while the fourth adopts a trans-gauche-gauche conformation. The 1H-NMR spectrum of echistatin has been almost fully assigned. A single conformation was observed at 27 degrees C with the four proline residues adopting only the trans conformation. A large number of backbone amide protons were found to exchange slowly, but no segments of the backbone were found to be in either alpha-helical or beta-sheet conformation. A number of turns could be characterised. An irregular beta-hairpin contains the RGD sequence in a mobile loop at its tip. Two of the four disulphide cross-links have been identified from the NMR spectra. The data presented in this paper will serve to define the structure of echistatin more closely in subsequent studies.  相似文献   

17.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

18.
The solution structure of insectotoxin 15A (35 residues) from scorpion Buthus eupeus was determined on the basis of 386 interproton distance restraints 12 hydrogen-bonding restraints and 113 dihedral angle restraints derived from 1H NMR experiments. A group of 20 structures was calculated with the distance geometry program DIANA followed by the restrained energy minimization with the program CHARMM. The atomic RMS distribution about the mean coordinate position is 0.64 +/- 0.11 A for the backbone atoms and 1.35 +/- 0.20 A for all atoms. The structure contains an alpha-helix (residues 10-20) and a three-stranded antiparallel beta-sheet (residues 2-5, 24-28 and 29-33). A pairing of the eight cysteine residues of insectotoxin 15A was established basing on NMR data. Three disulfide bridges (residues 2-19, 16-31 and 20-33) connect the alpha-helix with the beta-sheet, and the fourth one (5-26) joins beta-strands together. The spatial fold of secondary structure elements (the alpha-helix and the beta-sheet) of the insectotoxin 15A is very similar to those of the other short and long scorpion toxins in spite of a low (about 20%) sequence homology.  相似文献   

19.
The conformational properties of bradykinin in five molar excess sodium dodecyl sulfate (SDS) micelles have been examined by two-dimensional nuclear magnetic resonance (NMR) techniques at 500 MHz. Detailed structural information for bradykinin in SDS was obtained from quantitative 2-D nuclear Overhauser enhancement (n.O.e.) analyses, distance geometry, and restrained molecular mechanics and dynamics calculations. The conformation of bradykinin in SDS micelles, as determined by these methods, is characterized by a beta-turn-like structure at residues 6-9. A detailed comparison of the structures derived from distance geometry and restrained molecular mechanics and dynamics is also presented.  相似文献   

20.
Comparison between the structures and solvent-accessible surfaces of the antigen-binding fragments of two murine anti-p-azophenylarsonate monoclonal antibodies, one bearing a major cross-reactive idiotype of A/J strain mice (36-71) and one lacking the idiotype (R19.9; Lascombe et al., 1989), highlight the structural basis for the determination of hapten affinity and idiotypy. Since the sequence of R 19.9 is identical with the germline-encoded sequence at 16 positions in both heavy-chain and light-chain variable regions where somatic mutations and junctional differences have occurred to produce the 36-71 sequence, the structure of R 19.9 can be used to model the structure of the germline-encoded antibody (36-65) in the regions around these sites. These 16 sequence differences exclude the third heavy-chain complementarity-determining region because R 19.9 utilizes a D gene segment not associated with the predominant idiotype, which is 4 residues longer than the canonical D gene segment utilized in the sequences of 36-71 and 36-65. This difference between the structures of R 19.9 and 36-71 does not affect the validity of using the structure of R 19.9 to model the structure of 36-65 since the third heavy-chain complementarity-determining region is highly solvent-exposed in both 36-71 and R 19.9, and does not interact with any of these 16 sites. Comparing the structures of 36-71 and R 19.9 suggests that only three of the differences in the heavy-chain sequences, and three of the differences in the light-chain sequences of 36-71 and 36-65, increase the affinity for hapten.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号