首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological specialisation on different host plants occurs frequently among phytophagous insects and is normally assumed to have a genetic basis. However, insects often carry microbial symbionts, which may play a role in the evolution of specialisation. The bacterium Regiella insecticola is a facultative symbiont of pea aphids (Acyrthosiphon pisum) where it is found most frequently in aphid clones feeding on Trifolium giving rise to the hypothesis that it may improve aphid performance on this plant. A study in which R. insecticola was eliminated from a single naturally infected aphid clone supported the hypothesis, but a second involving two aphid clones did not find the same effect. We created a series of new pea aphid–R. insecticola associations by injecting different strains of bacteria into five aphid clones uninfected by symbionts. For all aphid clones, the bacteria decreased the rate at which aphids accepted Vicia faba as a food plant and reduced performance on this plant. Their effect on aphids given Trifolium pratense was more complex: R. insecticola negatively affected acceptance by all aphid clones, had no effect on the performance of four aphid clones, but increased performance of a fifth, thus demonstrating genetic variation in the effect of R. insecticola on pea aphid host use. We discuss how these results may explain the distribution and frequency of this symbiont across different aphid populations. Julia Ferrari and Claire L. Scarborough contributed equally to the work.  相似文献   

2.
Aphids feed on plant phloem sap, rich in sugars but poor in essential amino acids. However, sugars cause osmotic regulation problems for aphids, which they overcome by hydrolysing the sugars in their gut and polymerising the hydrolysis products into oligosaccharides, excreted with honeydew. Aphids harbour primary bacterial endosymbionts, which supply them with essential amino acids necessary for survival. They also harbour secondary (facultative) endosymbionts (sfS), some of which have a positive impact on life history traits, although it is not yet known whether they also play a role in providing effective tolerance to differing levels of water soluble carbohydrates (WSCs). We investigated the relationship between WSC content of cocksfoot cultivars and performance of clones of the English grain aphid Sitobion avenae F. We evaluated how clone genotype and their sfS modulate performance on these different cultivars. We therefore examined the performance of genetically defined clones of S. avenae, collected from different host plants, harbouring different sfS. The performance was tested on 10 Dactylis glomerata L. cultivars with varying WSC content. D. glomerata is known as a wild host plant for S. avenae and is also commercially planted. We found that high WSCs levels are responsible for the resistance of D. glomerata cultivars to specific S. avenae clones. The minimum level of WSCs conferring resistance to D. glomerata cultivars was 1.7% dw. Cultivars with a WSC content of 2.2% or higher were resistant to S. avenae and did not allow reproduction. Our results further indicate that sfS modulate to some extend host plant cultivar adaptation in S. avenae. This is the first study revealing the importance of WSCs for aphid performance. Cocksfoot cultivars with a high content of WSCs might be therefore considered for aphid control or used for resistance breeding in this and other grass species, including cereals.  相似文献   

3.
The grain aphid Sitobion avenae F., one of the major pest aphids of cereals in Central Europe, exhibits colour polymorphism, even within the same clones. Although there is evidence that green and brown morphs of S. avenae contain different carotenoids, the mechanisms determining the induction of colour morphs are unknown. The common understanding is that the formation of colour morphs is controlled by light and affected by genetic and environmental factors and by host plant species. So far, there is no unequivocal evidence that light intensity, photoperiod, or a mixture of several variables are involved in the induction of S. avenae colour formation, resulting in the induction of S. avenae colour formation and carotenoid synthesis.Here we determined the effect of light intensity on the colour formation and performance of ten clones of S. avenae with experiments that controlled for the effects of host plant and genetic factors. We found that some clones remained green under all test conditions. In other clones, colour morph formation was controlled by light. The synthesis of carotenoids correlated with changes in colour formation. Host plant did not affect colour formation in the ten clones studied. Although colour of the aphid clones did not affect their performance, high light intensity increased the fecundity and fresh weight of S. avenae clones, while low light intensity stimulated the production of alatae.  相似文献   

4.
A total of 55 parthenogenetic lineages of the grain aphid, Sitobion avenae F. were established from single clones collected from winter wheat (agricultural host) and cocksfoot (natural host) at various locations in southern Britain. RAPD-PCR profiles indicated that these lineages consisted of at least 15 genetically distinct clones. Twenty winged individuals (alatae) of known weight were taken from each lineage and presented with a choice of wheat and cocksfoot hosts (with a total leaf area each of 2 cm2) held in petri dishes (laboratory experiments) and flowerpots (field experiments). In both experimental designs host preferences were determined by a ranking of a proportion of counts (limited to -1 +1) of the progeny produced on each host after 5 days. Overall, alatae tended to prefer the agricultural host. However, alatae from individual clones found exclusively on wheat generally had a higher preference for wheat than alatae from individual clones found exclusively on cocksfoot. Wheat-derived lineages (aphid genotypes that were collected on wheat but also present on cocksfoot) showed a significantly greater preference for the agricultural host than the cocksfoot-derived lineages. Individuals from a wheat-derived lineage had significantly higher observed and potential progeny production on wheat than they did on cocksfoot, while individuals from a cocksfoot-derived lineage had significantly higher potential progeny but lower mean progeny weights on wheat. In a second stage, reciprocal host transfer experiments were carried out in the laboratory, i.e. lineages collected from the agricultural host were reared for several generations on the natural host and vice versa prior to being tested for host preference. The preference of the lineages for their host of origin significantly decreased in this second trial, reversing the overall preference trends, while there was little evidence for between-lineage variation in this change in preference. In summary these results indicate weak genotypic but strong environmental influences on alate host preference in S. avenae. This host plant conditioning effect may serve to promote host-based genetic structuring observed in southern British populations of S. avenae.  相似文献   

5.
The great variability of the aphid life cycle and their tendency for host alternation gives rise to aphid clones and morphs. Inter‐ and intraclonal variability may be observed in the responses of aphids to various environmental factors. In this study we aimed to evaluate the influence of intrinsic factors (clone and morph type) on the intrinsic rate of increase (rm) of the English grain aphid, Sitobion avenae (Fabricius), and the bird cherry‐oat aphid, Rhopalosiphum padi (Linnaeus). For each species four apterous clones were collected from established laboratory colonies and compared to assess their relative fitness on high‐ and low‐nitrogen wheat plants under laboratory conditions. The clones had significantly different intrinsic rates of increase on high‐ and low‐nitrogen plants. All R. padi clones had a higher intrinsic rate of increase and mean relative growth rate than S. avenae. Experiments were also conducted to compare the mean fecundity of apterous and alate morphs of S. avenae and R. padi clones on high‐ and low‐nitrogen wheat plants. On high‐nitrogen plants the apterous morphs of S. avenae clones had significantly higher mean fecundity than alate morphs. There were no significant differences between the mean fecundity of alate morphs of the same species on high‐ and low‐nitrogen plants. The results support the idea of better fitness of specific clones/morphs on certain host plants due to higher and lower intrinsic rates of increase.  相似文献   

6.
Induced defences are a typical case of phenotypic plasticity, involving benefits for ‘plastic’ phenotypes under environments with variable degree of stress. Defence induction, in turn, could be energetically expensive incurring costs on growth and reproduction. In this study, we investigated the genetic variation and induction of detoxification enzymes mediated by wheat chemical defences (hydroxamic acids; Hx), and their metabolic and fitness costs using five multilocus genotypes of the grain aphid (Sitobion avenae). Cytochrome P450 monooxygenases and glutathione S‐transferases activities were seen to increase with Hx levels, whereas esterases activity and standard metabolic rate increased in wheat hosts with low Hx levels. Additionally, the intrinsic rate of increase (a fitness proxy) increased in highly defended hosts. However, we did not find significant genetic variation or genotype–host interaction for any studied trait. Therefore, aphids feeding on host plants with elevated chemical defences appeared to reduce their detoxification costs and to increase their reproductive performance, which we interpret as a novel adaptation to defended plants. In brief, this study supports the notion that aphids perform better on highly defended host plants, probably related to the selective pressures during the colonization of New World agroecosystems, characterized by highly defended host plants.  相似文献   

7.
Samples of the grain aphid Sitobion avenue (F.) and the rose-grain aphid Metopolophium dirhodum (Walker) were collected in late March from wheat fields and adjacent road-side grasses at a number of locations in southern England. Unparasitized aphids were DNA fingerprinted using the multilocus (GATA)4 probe. Over all locations, the fingerprints of individual S. avenue caught in wheat had lower overall average distances of band migration (ADBM) and shared a higher proportion of bands, than fingerprints of individuals caught in adjacent road-side grasses. The ADBM of fingerprints of S. avenue collected on road-side grasses altered significantly with geographical location, while the ADBM of fingerprints of S. avenue caught on wheat did not. A comparison of the fingerprints of individual M. dirhodum caught in wheat and neighbouring road-side grasses did not reveal any genetic differentiation. Fingerprints of M. dirhodum that were caught in the same host type did however, show significant variation in ADBM between different locations. With both S. avenue and M. dirhodum, spatial autocorrelation revealed that locations that were close together were no more likely to have individuals with similar ADBM than locations mat were far apart Our results suggest that (i) particular clones of S. avenue prefer to colonize wheat; and/or that (ii) particular clones of S. avenae perform better on wheat man other clones. It is unclear why M. dirhodum did not show any genetic structuring according to host type, but this species appears to engage in sexual reproduction much more frequently than S. avenae in southern England. M. dirhodum is likely to have displayed genetic heterogeneity between locations either because of founder effects, or because of genetic drift.  相似文献   

8.
李广雨  高瑞  赫娟  曹祝  胡祖庆  胡想顺  赵惠燕 《生态学报》2016,36(13):3987-3994
为了探究高压静电场对麦长管蚜Sitobion avenae Fabriciusde的影响。采用特定年龄生命表的方法,设置2、4、6 k V/cm辐射强度处理小麦种子和出生24h内的1龄若蚜。统计连续20代电场胁迫后麦长管蚜生命表种群参数、繁殖参数以及存活率的变化。结果表明:(1)经高压静电场处理后麦长管蚜的内禀增长率(r)在2 k V/cm和4 k V/cm强度时受影响显著(P0.05),但两者表现的世代不同,2 k V/cm和4 k V/cm的最低值分别出现在第20代和第10代。(2)麦长管蚜的净增值率(R0)、平均世代周期(T)、繁殖力(F)、成虫寿命和产仔天数等参数均呈现前期受高压静电场影响各处理组均显著低于对照组(P0.05),随着世代的增加高压静电处理组与对照组无显著差异。(3)麦长管蚜的特定年龄阶段存活率曲线受世代和高压静电场强度的影响显著。研究结论:麦长管蚜的生长发育和繁殖受世代和高压静电场强度的双重影响,且两者具有交互效应。研究的创新点在于:模拟自然条件下(同时对植物和昆虫进行高压静电场辐射处理)高压静电场对麦长管蚜的影响,为蚜虫生态遗传进化和生态控蚜提供理论依据。  相似文献   

9.
紫外长期胁迫对高世代麦长管蚜生命表参数的影响   总被引:1,自引:0,他引:1  
梁霞  赵贝  李媛  胡祖庆  赵惠燕 《生态学报》2018,38(17):6228-6234
为了评估紫外连续处理对第20代以后麦长管蚜Sitobion avenae (Fabricius)种群动态的影响,采用特定年龄生命表方法,设置不同强度(0,0.50,0.70 m W/cm2) UV-B连续多代处理麦长管蚜成虫,统计经紫外处理后的麦长管蚜第22代,第27代,第32代,第37代麦长管蚜生命表种群参数的变化并总结了1—37代麦长管蚜内禀增长率的变化规律。结果表明:(1)处理组供试麦长管蚜平均世代周期(T)呈先显著升高后下降的趋势。(2)低强度处理组内禀增长率(rm)、净增殖率(R0)、周限增长率(λ)均呈先升高后下降又升高的趋势,高强度处理组供试麦长管蚜内禀增长率(rm)、净增殖率(R0)、周限增长率(λ)呈先下降后显著升高的的趋势,且均在G37达到最大值。(3) 1—37代处理组麦长管蚜rm呈现先显著增高后下降又升高又下降又显著升高的变化规律,且均在G37达到最大值。由此可见:麦长管蚜经过多代的UV-B胁迫后,对其生命表参数的影响依然显著,在G37麦长管蚜对紫外的适应能力最强。本研究的创新点在于解析了第22代以后紫外胁迫对麦长管蚜种群动态的影响,从而为全面深入的阐述紫外胁迫对麦长管蚜生长繁殖的影响规律,掌握不同紫外胁迫下的剂量效应关系及麦长管蚜的适应性提供实验基础和理论依据。  相似文献   

10.
The effects of two bacterial endosymbionts, designated PASS and PAR, were evaluated on the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera:Aphididae), in which they occur facultatively, and on the blue alfalfa aphid, A. kondoi Shinji, in which these bacteria have not been found in natural populations. Subclones of pea aphids and blue alfalfa aphids, derived from parent aphid clones that did not contain PASS or PAR, were infected with one or both bacteria, generating PASS- and/or PAR-positive subclones with minimal genetic differences from the parent clones. Under laboratory conditions at 20 °C, PAR consistently reduced the fecundity (by between 19 and 60%) of subclones derived from three different parent pea aphid clones on bur clover, Medicago hispida Gaertn. PAR had intermediate effects on pea aphids reared on sweet pea, Lathyrus odoratus L., and had no significant effect on pea aphids on alfalfa, Medicago sativa L. The effect of PASS was either neutral or negative, depending on parent clone as well as host plant. Also at 20 °C, PASS reduced fecundity (70–77%) and longevity (40–48%), and increased the age of first reproduction (by up to 1.5 days) of blue alfalfa aphid reared on alfalfa and clover. PAR had a less dramatic effect (e.g., 30–39% reduction in fecundity) on these traits of blue alfalfa aphid. In contrast, PAR and PASS increased the fitness of pea aphid subclones of one parent clone reared for three generations at 25 °C on each of the three test plants. Without facultative bacteria, fecundity of the parent clone was reduced to a mean total of < 6 offspring per adult at this elevated temperature, but with PASS or PAR, mean total fecundity of its subclones was > 35. However, this ameliorative effect of facultative bacteria at 25 °C was not found for two other sets of parent clones and their derived subclones. Alate production in pea aphids was significantly increased in large populations of two PASS- and PAR-positive subclones relative to their parent clones. Attempts to transmit PASS or PAR horizontally, i.e., from aphid to aphid via feeding on host plants (bur clover), were unsuccessful.  相似文献   

11.
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north‐western Europe) and modern UK Elite varieties, for resistance to the bird cherry‐oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) and the English grain aphid, Sitobion avenae (Homoptera: Aphididae). A total of 338 lines were screened for R. padi and 340 lines for S. avenae. Field trials were also conducted on 122 Watkins lines to identify wheat bulb fly, Delia coarctata, preference on these landraces. Considerable variation was shown in insect performance among and within different wheat collections, with reduced susceptibility in a number of varieties, but phenotyping did not identify strong resistance to aphids or wheat bulb fly. Field trials showed within collection differences in aphid performance, with fewer aphids populating lines from the Watkins collection. This differs from development data in laboratory bioassays and suggests that there is a pre‐alighting cue deterring aphid settlement and demonstrates differences in aphid preference and performance on older plants in the field compared with seedlings in the laboratory, highlighting the need for phenotyping for aphid resistance at different plant growth stages. No association was identified between performance of the different insect species on individual varieties, potentially suggesting different nutritional requirements or resistance mechanisms.  相似文献   

12.
1 The recent increase in planting of selected willow clones as energy crops for biomass production has resulted in a need to understand the relationship between commonly grown, clonally propagated genotypes and their pests. 2 For the first time, we present a study of the interactions of six willow clones and a previously unconsidered pest, the giant willow aphid Tuberolachnus salignus. 3 Tuberolachnus salignus alatae displayed no preference between the clones, but there was genetic variation in resistance between the clones; Q83 was the most resistant and led to the lowest reproductive performance in the aphid 4 Maternal effects buffered changes in aphid performance. On four tested willow clones fecundity of first generation aphids on the new host clone was intermediate to that of the second generation and that of the clone used to maintain the aphids in culture. 5 In the field, patterns of aphid infestation were highly variable between years, with the duration of attack being up to four times longer in 1999. In both years there was a significant effect of willow clone on the intensity of infestation. However, whereas Orm had the lowest intensity of infestation in the first year, Dasyclados supported a lower population level than other monitored clones in the second year.  相似文献   

13.
Phytophagous insects generally feed on a restricted range of host plants, using a number of different sensory and behavioural mechanisms to locate and recognize their host plants. Phloem-feeding aphids have been shown to exhibit genetic variation for host preference of different plant species and genetic variation within a plant species can also have an effect on aphid preference and acceptance. It is known that genotypic interactions between barley genotypes and Sitobion avenae aphid genotypes influence aphid fitness, but it is unknown if these different aphid genotypes exhibit active host choice (preference) for the different barley genotypes. Active host choice by aphid genotypes for particular plant genotypes would lead to assortative association (non-random association) between the different aphid and plant genotypes. The performance of each aphid genotype on the plant genotypes also has the ability to enhance these interactions, especially if the aphid genotypes choose the plant genotype that also infers the greatest fitness. In this study, we demonstrate that different aphid genotypes exhibit differential preference and performance for different barley genotypes. Three out of four aphid genotypes exhibited preference for (or against) particular barley genotypes that were not concordant with differences in their reproductive rate on the specific barley genotype. This suggests active host choice of aphids is the primary mechanism for the observed pattern of non-random associations between aphid and barley genotypes. In a community context, such genetic associations between the aphids and barley can lead to population-level changes within the aphid species. These interactions may also have evolutionary effects on the surrounding interacting community, especially in ecosystems of limited species and genetic diversity.  相似文献   

14.
The influence of wheat (Triticum aestivumL.) resistance, the parasitoid Aphidius rhopalosiphiDe Stephani-Perez (Hymenoptera: Braconidae) and the entomopathogenic fungus Pandora neoaphidis(Remaudière et Hennebert) Humber (Zygomycetes: Entomophthorales) on the density and population growth rate of the cereal aphid Sitobion avenae(F.) (Hemiptera: Aphididae) was studied under laboratory conditions. Partial wheat resistance was based on hydroxamic acids, a family of secondary metabolites characteristic of several cultivated cereals. The partial resistance of wheat cultivar Naofén, the action of the parasitoid and the joint action of the parasitoid and fungus, reduced aphid density. The lowest aphid densities were obtained with the combination of the parasitoid and the fungus, but wheat resistance under these circumstances did not improve aphid control. Significant reductions of population growth rate (PGR) of aphids were obtained with the joint action of wheat resistance and natural enemies. In particular, the combined effects of parasitoids and fungi showed significantly lower PGR than the control without natural enemies in both wheat cultivars. Our results support the hypothesis that wheat resistance and the utilization of biological control agents could be complementary strategies in an integrated pest management program against cereal aphids.  相似文献   

15.
The performance of one clone of the pea aphid,Acyrthosiphon pisum (Harris), was assessed on 37 different cultivars and species ofPisum L. In addition, random samples of 36 pea aphid clones collected on alfalfa and clover were tested on a selection of fivePisum sativum L. cultivars. Aphid performance was evaluated in terms of the mean relative growth rate (MRGR) during the first five days of life or other life history variables. The MRGR of the first-mentioned pea aphid clone differed little between cultivars. No significant differences in MRGR were found between wild and cultivatedPisum species or between modern and oldP. sativum cultivars. There was considerable variation in host adaptation among the 36 pea aphid clones within each sampled field. The pea aphid clones showed no consistent pattern in performance on four of the five pea cultivars i.e. there was a significant pea aphid genotype —pea genotype interaction. On one of the cultivars all clones performed well. Pea aphid clones collected from red clover generally performed relatively poorly on pea cultivars, in contrast to the pea aphid clones collected on alfalfa. There was no difference in performance between the two pea aphid colour forms tested. Possible reasons for the high variation and the observed adaptation patterns are discussed. The fact that all clones were collected in two adjacent fields indicates thatA. pisum shows high local intraspecific variability in terms of host adaptation.  相似文献   

16.
1 Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2 The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3 Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4 Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales‐infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5 Our findings indicate that S. avenae populations can be controlled using conservation biological control  相似文献   

17.
The study of aphid host selection and feeding behavior is difficult because aphids have to penetrate the plant to reach their feeding site, phloem tissue. The activity of the stylets, salivation or food intake, can not be observed externally and requires an indirect visualization technique such as the Electric Penetration Graph (EPG). The plant selection behavior of Sitobion avenae on potato varied depending on whether an ethological or EPG method was used to study it. A similar variation did not occur with Myzus persicae or Rhopalosiphum padi. The application of water-based silver conductive paint onto the thorax, as normally used for EPG, or onto the abdomen of Sitobion avenae alates resulted in increased duration and frequency of probing compared to results from ethological observations. Our results indicated that EPG manipulations might have different effects on different species of aphids and that a comparison of EPG and ethological data is required to confirm that the EPG method does not bias aphid feeding behavior.  相似文献   

18.
1 Integrated management of crop pests requires the identification of the appropriate spatial scale at which colonization processes occurs. We assessed, by coupling demographic and genetic methods, the relative contribution of local and transient migrants of the grain aphid Sitobion avenae to wheat field colonization in spring. 2 We examined, during two consecutive years, the daily colonization of wheat by aphid migrants and compared this with daily aphid flight monitored by a local 12.2‐m suction trap. The genetic profiles of aphids landing on crops were compared with those of both flying aphids caught by the suction trap and local populations from arable crops and hedgerows. 3 In the first year, we observed: (i) a strong correlation between aphids colonizing the crop and those moving within the crop and a close genetic similarity between aphids from these samples and (ii) a high level of genetic differentiation between these aphids and populations from local cereals and field margins. In the second year, the number of migrants recorded on the wheat was three‐fold higher than in the previous year, and less correlated with that recorded by the suction trap. This was associated with a lack of genetic differentiation between all samples. 4 This variation in the colonization processes resulted mainly in an abrupt increase in abundance of genotypes from local over‐wintering sites in 2004. This suggests that, despite the long range dispersal potential of the grain aphid, outbreak risks could be mainly determined at a local scale, encouraging the design of relatively small management units.  相似文献   

19.
Heritable microbial symbionts can have important effects on many aspects of their hosts’ biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts.  相似文献   

20.
Aphids produce gel saliva during feeding which forms a sheath around the stylet as it penetrates through the apoplast. The sheath is required for the sustained ingestion of phloem sap from sieve elements and is thought to form when the structural sheath protein (SHP) is cross‐linked by intermolecular disulphide bridges. We investigated the possibility of controlling aphid infestation by host‐induced gene silencing (HIGS) targeting shp expression in the grain aphid Sitobion avenae. When aphids were fed on transgenic barley expressing shp double‐stranded RNA (shp‐dsRNA), they produced significantly lower levels of shp mRNA compared to aphids feeding on wild‐type plants, suggesting that the transfer of inhibitory RNA from the plant to the insect was successful. shp expression remained low when aphids were transferred from transgenic plants and fed for 1 or 2 weeks, respectively, on wild‐type plants, confirming that silencing had a prolonged impact. Reduced shp expression correlated with a decline in growth, reproduction and survival rates. Remarkably, morphological and physiological aberrations such as winged adults and delayed maturation were maintained over seven aphid generations feeding on wild‐type plants. Targeting shp expression therefore appears to cause strong transgenerational effects on feeding, development and survival in S. avenae, suggesting that the HIGS technology has a realistic potential for the control of aphid pests in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号