首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
预选菜用大豆主要生化物质积累特性初步研究   总被引:4,自引:0,他引:4  
以20个大豆品种为材料,在鼓粒期至青荚期分期取样,对豆粒的蛋白质、游离氨基酸、脂肪、淀粉和可溶性糖及维生素C含量等生化物质进行测定.研究表明,随着豆粒的充实,各种生化物质不断增加,但达到最大峰值的时间不同.脂肪、蛋白质和氨基酸含量于鼓粒中后期达到峰值,淀粉和可溶性糖含量于鼓粒中前期达到峰值,维生素C积累主要集中在鼓粒前期.所以在菜用大豆鼓粒中期或后期即开花后18~25d采收可保证较高水平的生化物质含量,最终保证菜用大豆的品质.经过综合评价20个大豆品种的农艺性状、营养品质及外观品质,初步筛选出适合河北省种植的菜用大豆品种有绿75、黑大粒、冀黄104、日本A、D103、中黄13.  相似文献   

2.
李艳  盖钧镒 《植物学报》2017,52(4):389-393
大豆(Glycine max)是光周期敏感的植物,该特性是决定其生育期及其生态适应区的关键因素。温带的大豆品种引种到热带地区(短日照)时,开花期和成熟期提前、产量降低,限制了大豆在热带地区的种植。长童期(LJ)大豆品种的发现是解决该问题的重要突破。在短日照条件下,LJ品种比温带品种开花晚、体量大、成熟晚且产量提高。前期研究发现,J位点是控制LJ性状的关键位点。近期,我国科学家通过精细定位克隆了J基因,发现其与拟南芥(Arabidopsis thaliana)早花基因(ELF3)同源。他们通过功能互补和近等基因系等方法验证了J基因的功能,在短日照条件下,等位基因j比J开花晚、成熟晚且产量提高。进一步研究发现,J蛋白与E1基因(豆科植物开花抑制因子)的启动子结合抑制E1基因的表达,从而解除E1对大豆开花基因(FT)的抑制,促进大豆在短日照下开花。研究还发现在大豆种质资源中存在多种j等位变异。该研究引领了大豆生育期遗传研究的新方向,揭示了大豆向热带地区发展的遗传基础。  相似文献   

3.
大豆开花后光周期反应的研究   总被引:18,自引:0,他引:18  
利用中国大豆主要生态区的生育期不同的代表品种研究了大豆(Glycine m ax (L.)Merr.)开花后对光照长度的反应. 结果表明,不同成熟期的大豆品种开花后普遍存在着对光照长度的反应.这种反应属于典型的光周期现象,而不是由温度的替代作用、光合时间的改变或前期短日后效应引起的.开花后光周期反应不仅存在于大豆的花荚期,而且存在于鼓粒期.研究认为∶大豆开花结实对光周期的需求是一个连续过程;光周期对大豆生育期的调控作用存在于出苗至成熟的全过程;光周期诱导开花和促进成熟的作用有一定的共同性;光周期诱导效果具有持效性和可逆性  相似文献   

4.
李秀菊  孟繁静 《植物学报》1999,16(4):464-467
大豆开花结荚期,不同发育阶段的幼蕾与花荚的脱落率不同,其中以花后5d内的幼荚脱落最严重。与败育花荚相比,正常花荚中的干物质积累量均较高。细胞分裂素(DHZRs,ZRs,iPA)含量也较高,花后3~5d的幼荚中表现更明显。脱落酸(ABA)则是以败育幼蕾及花后3~5d的幼荚中含量较高。不同发育阶段的大豆生殖器官中,正常开放花中的玉米赤霉烯酮(ZEN)含量最高。  相似文献   

5.
大豆花荚败育期间的植物激素变化   总被引:8,自引:0,他引:8  
大豆开花结荚期,不同发育阶段的幼蕾与花荚的脱落率不同,其中以花后5d内的幼荚脱落最严重。与败育花荚相比,正常花荚中的干物质积累量均较高。细胞分裂素(DHZRs,ZRs,iPA)含量也较高,花后3~5d的幼荚中表现更明显。脱落酸(ABA)则是以败育幼蕾及花后3~5d的幼荚中含量较高。不同发育阶段的大豆生殖器官中,正常开放花中的玉米赤霉烯酮(ZEN)含量最高  相似文献   

6.
遮光对蚕豆花荚形成和脱落的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
本文旨在研究蚕豆开花前后不同时期光照强度对花荚形成和脱落的影响。产量补偿能力以及花荚形成和脱落的生理生态原因。蚕豆花前遮光,开花总数和结荚数降低,但花荚脱落率下降,粒重增加。花期和花后遮光,对开花总数没有明显影响,但花荚脱落严重,减产最多。任何时期遮光均使比叶重、遮光后期叶绿素含量、光合生产量、生殖器官干物质分配率,可溶性糖和含N量下降,但成熟期可溶性糖和含N量,营养元素吸收量不受影响。遮光导致花荚形 成和产量减少的主要原因是C/N比值下降,而不是改变营养元素的丰度所致。  相似文献   

7.
水氮互作对胡麻干物质生产和产量的影响   总被引:1,自引:0,他引:1  
以‘陇亚杂1号’胡麻为试验材料,设计田间水(主区)、氮(副区)两因子裂区试验,水分设置分茎水(60mm,W_1)、分茎水+开花水(W_2,60mm+40mm)、分茎水+现蕾水+开花水(W3,60mm+40mm+40mm)3个处理,施纯氮量设置0(N_1)、75.0(N_2)、112.5(N_3)、150.0(N_4)kg·hm~(-2)共4个水平,考察水氮互作对胡麻干物质积累与分配以及籽粒产量的影响,探讨不同水氮配合下胡麻的增产机制。结果显示:(1)灌溉量和施氮量对胡麻主要生育时期的干物质积累与分配有显著影响,胡麻籽粒产量的水氮互作效应达到极显著水平,其中水分效应大于氮肥效应。(2)同一施氮量水平下,W_2处理明显增加了胡麻成熟期籽粒的干物质分配量和花后干物质同化量对籽粒的贡献率,且籽粒产量显著高于其他处理10.51%~27.99%。(3)灌水量相同条件下,开花后干物质同化量对籽粒的贡献率以N_3水平的最高,显著高于其他施氮水平7.90%~42.43%;在W_2、W_3处理下,施氮水平为N_3时胡麻籽粒产量最高,但施氮量过多,籽粒产量反而显著下降7.96%~9.62%。研究表明,水氮协调在胡麻干物质积累和分配中起着关键的作用,而干物质的积累和分配又与籽粒产量密切相关;在本试验条件下,施纯氮量为112.5kg·hm~(-2)、全生育期在分茎期和开花期灌2次水(60mm+40mm)处理为胡麻节水减氮较为适宜的水氮组合。  相似文献   

8.
大田栽培条件下,在大豆始花期叶面喷施以植物多糖(P1)、植物多糖和5-氨基乙酰丙酸(P2)以及植物多糖、5-氨基乙酰丙酸和缩节胺(P3)为有效成分复配的3种制剂,研究不同植物多糖类复合制剂对大豆叶绿素含量、光合蒸腾特性、干物质积累与分配以及籽粒产量的影响.结果表明:喷施3种制剂35 d内,大豆叶片叶绿素含量与对照相比明显增加,且随生育进程下降的趋势有所延缓;喷施P1和P3使大豆叶片光合速率和水分利用效率分别提高13.2%和10.3%以上.与对照相比,喷施3种制剂促进了大豆地上部于物质积累量的增加、提高了叶片干物质向荚的分配比例,花后干物质同化量对籽粒的贡献率增加17.1%以上;喷施P1和P3后,大豆单株荚数、单株粒数和百粒重显著增加,喷施P2后变化不显著;喷施3种制剂使大豆增产5.9%以上.3种植物多糖类复合制剂可促进大豆叶绿素合成、延缓叶片衰老、改善叶片光合潜能和水分状况,有效调控大豆干物质积累和花后同化物分配,进而实现增产.  相似文献   

9.
大豆是喜温、短日照作物,同时也是需水较多的作物。大豆的一生要经历出苗、幼苗生长、花芽分化、开花结荚、鼓粒、新种子成熟的全过程。在这一整个过程中,每一时期降水的多少都影响着大豆产量的高低,特别是大豆需水临界期缺水或降水过多,都将严重影响大豆的产量。  相似文献   

10.
植物激素在大豆生殖器官脱落过程中的变化(英)   总被引:1,自引:0,他引:1  
研究了大田生长条件下,大豆品种──早12花及幼荚脱落过程中植物激素变化。结果表明,自盛花期始,位于大豆第8~12节位的花序,其上、中、下三个部分花荚的脱落率逐渐升高,至最后一次取样时,三部分花荚的脱落率分别为77.4%、54.7%和18.3%,说明同一花序的基部花荚不易脱落。由内源细胞分裂素(iPA,ZRs,DHZRs)的分析发现,基部幼荚在生长前期,其内源iPA、ZRs、DHZRs均出现一个含量高峰,总CTK含量明显高于中、下部,而在后期脱落酸含量则明显较低;后期基部幼荚的生长速率及干物质积累量均高于中、上部。可见,植物激素参与调控了大豆生殖器官的脱落过程。  相似文献   

11.
Field experiments concerning lupin grown in a low‐rainfall environment of the Mediterranean climatic region of Western Australia were conducted over three seasons to identify and evaluate the characteristics that maximise yield per unit of rainfall. The characteristics of early flowering and podding, high pod retention, fast rates of seed filling, osmotic adjustment and the degree of dry matter transfer from stem to the seed were studied in 12 lupin genotypes differing in seed yield under conditions of terminal drought. To allow recently released cultivars and advanced breeding lines to be evaluated, five to six genotypes were included in the first and the third year and nine in the second year. The genotypes were grown rainfed until pod set and then under a rainout shelter. Flowering and podding dates, pod retention, seed growth rate and osmotic adjustment were measured in detail, together with leaf water potential, seed yield and its components. The timing and intensity of development of the terminal drought varied from average in 1998 and 1999 to extreme in 2000. In each year, the seed yield under terminal drought showed genotypic differences, which appeared consistent with the timing and intensity of the development of terminal drought. Early flowering and podding were significantly correlated with seed yield. Fast rates of seed growth were highly and significantly correlated with high yields regardless of the intensity of development of terminal drought. Pod retention was highly correlated with yield in seasons in which the intensity of the development of terminal drought was average but not under extreme conditions of terminal drought. This was because the seed number per pod was markedly reduced to compensate for the high number of pods retained. Osmotic adjustment did not occur during the development of terminal drought in any of the genotypes. Dry matter transfer from stems to seeds was insignificant and not related to seed yield, suggesting that it is not a useful characteristic in screening for high yield under terminal drought.  相似文献   

12.
The effects of climatic factors on the growth, reproductive development and seed yield of cowpea (cv. K 2809) were investigated in controlled environment cabinets. Plants were grown to maturity in eight environments comprising all combinations of two day lengths (11 h 40 min and 13 h 20 min), two day (27 and 33 oC) and two night (19 and 24 oC) temperatures. The plants were nodulated (Rhizobium strain CB 756) and received 197 ppm N throughout growth. Treatments changed the time to the appearance of first flowers by a maximum of 6 days but the later-flowering plants more than doubled their dry weight during this period, so that effects on plant form and, ultimately, seed production were considerable. Warm nights (24 oC) not only hastened the onset of flowering but also enhanced dry matter production during the pre-flowering period; they did not extend the total growing period. Warm days (33 oC) did not enhance dry matter production but shortened the duration of the growing period by an average of 21 days (20%). Variation in final seed yield was mainly due to differences in the number of pods borne on branches. Warm days markedly decreased the number of pods per plant (an overall average reduction of 49%) as did warm nights in conjunction with the long (13 h 20) daylength. The number of seeds per pod was effected only by daylength (8.3 and 7.6 seeds in the long and short daylengths, respectively). Mean seed weight was decreased by 19% in warm as compared to cool nights but was increased by 18% in warm as compared to cool days. These responses are compared with those obtained with soyabean cv. TK5 in a previous experiment and are shown, in general, to be similar.  相似文献   

13.
Typical varieties from the main ecological regions and of different maturity stages in China were chosen for studying the post-flowering photoperiodic responses to day length in soybean (Glycine max (L.) Merr. ). The results indicated that the response to post-flowering photoperiod existed among all varieties with different maturity stages. The response was not due to of temperature effects, duration of photosynthesis or pre-flowering 15hotoperiodic after-effect Instead, it was typical photoperiodism. The response was found not only at the stages of flowering and podding but also at the stage of seed filling. Experimental results proposed that the photoperiodic demand for flowering and fruiting in soybean was a continuous process. The regulation of photoperiod on growth lasted from emergence of seedlings to maturation. There were some common basis in photoperiodic effects on both flowering induction and maturation promotion. However, the effects of photoperiodic induction had after-effect and were reversible.  相似文献   

14.
Glutelin accumulation in the apical spikelet of the top primary branch (superior spikelet) and the second spikelet of the lowest secondary branch (inferior spikelet) of the ear of the rice plant (Oryza sativa L.) was characterized during grain filling.In the superior spikelet, the accumulation of dry matter and nitrogen started immediately after flowering and rapidly reached the maturation level by 20 days after heading (DAH). At 7 DAH, total RNA content had already reached its maximum level and glutelin mRNA content 70% of its maximum. The increase in glutelin mRNA was followed by a rapid increase in glutelin between 7 and 16 DAH.In the inferior spikelet dry matter, nitrogen and glutelin accumulation were low immediately after flowering and increased only after grain filling of the superior spikelet was almost complete. Total RNA and glutelin mRNA increased much later at slower rates than in the superior spikelet.It is very likely that the retardation of dry matter, total nitrogen and glutelin accumulation in the inferior spikelet is due to retardation of differentiation and development of endosperm tissue, and to glutelin gene expression in endosperm cells. It is suggested that the delayed development resulted from limited partitioning of nutrients to the inferior spikelet at the early stage of ripening.  相似文献   

15.
以桂华占、八桂香为材料,在干湿交替灌溉、亏缺灌溉、淹水灌溉3种水分条件下,研究优质稻花后植株碳氮流转与籽粒生长及品质的相关性。结果表明:不同水分管理下,桂华占和八桂香花后碳氮流转与籽粒的生长间存在密切相关。主要表现在:(1)茎鞘和叶片干物质转运对籽粒干物质积累的贡献率为16.86%~25.68%,花后茎叶干物质运转速度和运转率与籽粒起始灌浆势呈显著甚至极显著正相关;籽粒最大灌浆速率、活跃灌浆期、持续灌浆时间与叶片干物质运转速度和运转率呈极显著正相关,与茎鞘干物质运转速度和运转率呈极显著负相关;(2)茎鞘碳同化物转运对籽粒的产量和淀粉产量的贡献率则为干湿交替灌溉>亏缺灌溉>淹水灌溉;但叶片碳同化物转运对籽粒的产量和淀粉产量的贡献率则为淹水灌溉>亏缺灌溉>干湿交替灌溉;茎叶可溶性糖积累量的减少和籽粒直链淀粉含量和积累量增加是同步的,且茎叶可溶性糖积累量快速递减期(花后3~12d)与直链淀粉含量和积累量快速递增期(花后6~12d)同步;(3)茎鞘和叶片氮素转运对籽粒氮素积累的贡献率为44.05%~117.66%,叶片总氮转运对籽粒氮素积累的贡献率大于茎鞘,茎鞘和叶片氮同化物对籽粒氮素的贡献率以淹水灌溉处理的最大,亏缺灌溉处理的次之,干湿交替灌溉处理的最小。  相似文献   

16.
Time measurement and the control of flowering in plants   总被引:12,自引:0,他引:12  
Many plants are adapted to flower at particular times of year, to ensure optimal pollination and seed maturation. In these plants flowering is controlled by environmental signals that reflect the changing seasons, particularly daylength and temperature. The response to daylength varies, so that plants isolated at higher latitudes tend to flower in response to long daylengths of spring and summer, while plants from lower latitudes avoid the extreme heat of summer by responding to short days. Such responses require a mechanism for measuring time, and the circadian clock that regulates daily rhythms in behaviour also acts as the timer in the measurement of daylength. Plants from high latitudes often also show an extreme response to temperature called vernalisation in which flowering is repressed until the plant is exposed to winter temperatures for an extended time. Genetic approaches in Arabidopsis have identified a number of genes that control vernalisation and daylength responses. These genes are described and models presented for how daylength might regulate flowering by controlling their expression by the circadian clock. BioEssays 22:38-47, 2000.  相似文献   

17.
在黑龙江省黑河市九三管理局(第四积温带)和大庆市林甸县(第二积温带)进行大田试验, 以大豆品种‘垦丰41’为试验材料, 于初花期叶面喷施50 mg·L-1烯效唑(S3307)和50 mg·L-1 2-N, N-二乙氨基乙基己酸酯(DTA-6)调节剂, 通过灰关联分析方法, 研究了影响大豆产量的主要因素, 并对比分析了两种生态条件下大豆光热资源利用率和产量的差异, 探究了化控技术对大豆光热资源利用率的调控效应. 结果表明:与降雨量和日照时数相比, 地表总辐射和≥10 ℃有效积温是影响两个生态区大豆产量的主要因素. 播种到开花期的光热资源利用率与单株干物质积累量呈极显著正相关, 开花至结荚期的光热资源利用率与单株干物质积累量呈显著正相关. 产量与苗期至结荚期的干物质积累量、单株粒数、单株粒重和百粒重呈极显著正相关. S3307和DTA-6均可显著提高两个生态区大豆的光热资源利用率和产量. 其中, S3307对两个生态区大豆光热资源利用率和产量的调控效果较好. 在九三和林甸两个生态区, S3307大豆光能利用率分别提高了13.6%和17.1%, 热量利用效率分别提高了14.1%和17.2%, 较不施用对照分别增产14.1%和17.3%. 因此, 采用合理的化控技术是提高光热资源利用率、实现大豆高产的有效途径.  相似文献   

18.
Two experiments were done in Saxcil growth cabinets in order to investigate the effects of climatic factors and nitrogen nutrition on the growth, reproductive development and seed yield of soyabean cv. TK5. In the first, plants were grown to maturity in eight environments comprising all combinations of two short daylengths (11 h 40 min and 13 h 20 min), two day (27 and 33oC) and two night (19 and 24oC) temperatures. In the second, day temperature was kept at 33oC but the night temperature was varied (19 and 24oC) as was the mineral nitrogen supply (20 and 197 ppm N) to plants which were either inoculated or not with an effective single strain of Rhizobium. Taller, more branched, later flowering plants were produced in the longer daylength but seed yield was hardly affected because the components of yield did not all respond similarly. In the higher day temperature treatments seed yield per plant was reduced by half because all yield components were adversely affected - pods per plant by 34 %, mean seed dry weight by 24 % and seeds per pod just slightly. There was a marked effect of the higher night temperature which promoted early vegetative growth, induced early flowering and although the number of pods per plant was, overall, reduced by 48 %, seed yield per plant was little affected as mean seed dry weight was increased by 37 % and the number of seeds per pod was also increased slightly. Prior to flowering, nodulated plants obtained about two thirds of their total nitrogen requirement via direct uptake and one third through the symbiotic system. Vegetative dry weight and plant nitrogen content were increased by the higher mineral nitrogen level and, although height was slightly diminished, more branches were produced. Seed yield, however, was only slightly increased. These experiments have shown that night temperature is an environmental factor of major importance for the growth of this soyabean cultivar. They have provided, also, a more rational basis for interpreting seasonal variations in growth and seed yield of soyabean in the tropics where, clearly, day and night temperature effects can override those of daylength and nitrogen nutrition.  相似文献   

19.
Developing seeds of chickpea cultivars G-130, L-550 and 850-3/27 grown under field conditions were sampled at different stages of maturity and analysed for soluble sugars, starch, soluble nitrogen, protein nitrogen and amino acids. Fr. wt of seeds of all three cultivars decreased after 28 days of flowering while the dry wt continued to increase. Rapid starch accumulation was observed between 14 and 28 days after flowering. Starch as per cent of seed dry wt started to decrease after 28 days, while starch per seed increased till maturity. The percentage of salt-soluble proteins decreased with maturation of seed. The electrophoretic pattern revealed that deposition of seed storage protein in cotyledons occurred 14 days after flowering. Most of the biochemical activity apparently occurred between 14 and 28 days after flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号