首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of N-(2-nitro-4-azidophenyl) serotonin (NAP-5-HT) on types A and B monoamine oxidase (MAO) in rat brain cortex were studied. In the dark this compound acted as a competitive inhibitor for both types A and B MAO (Ki values of 0.19 microM and 0.21 microM for types A and B MAO, respectively). Upon photolysis, NAP-5-HT became an irreversible inhibitor for only type B MAO. A 50% inhibition was obtained by irradiation of the enzyme in the presence of 35 nM NAP-5-HT. Furthermore the inhibition of type B MAO could be protected by including its substrate phenylethylamine during the irradiation. Under the same photolytic conditions photodependent inhibition of type A MAO by NAP-5-HT was not clearly observed. These results provide further evidence that there is a fundamental difference in the active site of the two types of MAO in brain. NAP-5-HT may be a useful photoaffinity probe for characterizing the active site of type B MAO.  相似文献   

2.
A series of novel bicyclic analogues of kynurenine were synthesised as inhibitors of kynureninase. The tryptophan-induced bacterial enzyme from Pseudomonas. fluorescens was compared to the constitutive recombinant human enzyme expressed in a baculovirus/insect cell system, with regard to their inhibition by these compounds. All the compounds studied were found to be simple competitive, reversible inhibitors of kynureninase. It was found that altering the size of the second ring of the inhibitor affected the observed Ki values for both enzymes. The addition of an oxygen atom into the second ring had little effect on binding to the bacterial enzyme but gave a more potent inhibitor of human kynureninase. Of the compounds tested, a naphthyl analogue of desaminokynurenine was found to be the most potent inhibitor for both enzymes with Ki values of 5 and 22 microM for bacterial and human enzyme respectively. This report also describes an alternative system for the expression of recombinant human kynureninase which is more convenient for expression in mammalian cells and produces a relatively greater quantity of enzyme.  相似文献   

3.
Hauptmann N  Shih JC 《Life sciences》2001,68(11):1231-1241
Cigarette smokers exhibit a lower monoamine oxidase (MAO; EC 1.4.3.4) activity than nonsmokers. MAO is located in the outer membrane of mitochondria and exists as two isoenzymes, MAO A and B. MAO A prefers 5-hydroxytryptamine (serotonin), and MAO B prefers phenylethylamine (PEA) as substrate. Dopamine is a substrate for both forms. 2-Naphthylamine is a carcinogen found in high concentrations in cigarette smoke. The results of this study show that 2-naphthylamine has the ability to inhibit mouse brain MAO A and B in vitro by mixed type inhibition (competitive and non-competitive). The Ki for MAO A was determined to be 52.0 microM and for MAO B 40.2 microM. The inhibitory effect of 2-naphthylamine on both MAO A and B catalytic activity, supports the hypothesis that smoking decreases MAO activity in vivo, instead that smokers with lower MAO activity are more prone to become a smoker.  相似文献   

4.
Fluorinated phenylcyclopropylamines and alkylamines were examined as inhibitors of recombinant human liver monoamine oxidase A (MAO A) and B (MAO B). For a series of trans- and cis-2-fluoro-2-phenylcyclopropylamine analogues, the presence of fluorine attached to a cyclopropane ring was found to result in an increase in inhibitory activity towards both MAO A and B. In addition, p-substitution of electron-withdrawing groups such as Cl and F in the aromatic ring of the trans-isomers increased the inhibition of both enzymes. (1S,2S)-2-Fluoro-2-phenylcyclopropylamine was a more potent inhibitor of both MAO A and B than was the (1R,2R)-enantiomer, indicating that the presence of fluorine has no influence on the enantioselectivity of MAO inhibition, since a similar effect of stereochemistry has been reported for tranylcypromine. Interestingly, fluorination at the 2-position of 1-phenycyclopropylamine, which is known as a selective inhibitor of MAO B relative to MAO A, reversed the selectivity and resulted in a potent inhibitor selective for MAO A. All inhibitors showed time- and concentration-dependent inhibition for both enzymes, with the exception of trans-2-fluoro-2-phenylcyclopropyl ethylamine, which acts as a competitive and reversible MAO A selective inhibitor.  相似文献   

5.
A comparative investigation of substrate specificity and inhibitor binding properties of recombinant zebrafish (Danio rerio) monoamine oxidase (zMAO) with those of recombinant human monoamine oxidases A and B (hMAO A and hMAO B) is presented. zMAO oxidizes the neurotransmitter amines (serotonin, dopamine and tyramine) with k(cat) values that exceed those of hMAO A or of hMAO B. The enzyme is competitively inhibited by hMAO A selective reversible inhibitors with the exception of d-amphetamine where uncompetitive inhibition is exhibited. The enzyme is unreactive with most MAO B-specific reversible inhibitors with the exception of chlorostyrylcaffeine. zMAO catalyzes the oxidation of para-substituted benzylamine analogs exhibiting (D)k(cat) and (D)(k(cat)/K(m)) values ranging from 2 to 8. Structure-activity correlations show a dependence of log k(cat) with the electronic factor σ(p) with a ρ value of +1.55±0.34; a value close to that for hMAO A but not with MAO B. zMAO differs from hMAO A or hMAO B in benzylamine analog binding correlations where an electronic effect (ρ=+1.29±0.31) is observed. These data demonstrate zMAO exhibits functional properties similar to hMAO A as well as exhibits its own unique behavior. These results should be useful for studies of MAO function in zebrafish models of human disease states.  相似文献   

6.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

7.
Three mercury-resistant marine Caulobacter strains showed an inducible mercury volatilization activity. Cell-free mercury volatilization (mercuric reductase) from these three marine Caulobacter strains was characterized and compared with enzyme activities determined by plasmids of Escherichia coli and Staphylococcus aureus. The temperature sensitivity of the Caulobacter mercuric reductase was greater than that of mercuric reductase from other gram-negative sources. Cell-free enzyme activity required NADH or NADPH, with NADPH functioning much better at lower concentrations than NADH. The Km for the Caulobacter enzyme was 4 microM Hg2+. Ag+ was a competitive inhibitor of Caulobacter mercuric reductase (Ki = 0.2 microM Ag+), as with previously studied enzymes. Arsenite was a noncompetitive inhibitor of the Caulobacter enzyme with a Ki of 75 microM AsO2-.  相似文献   

8.
The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 ?(3) volume and MAO B contains a dipartite cavity structure with volumes of ~290 ?(3) (entrance cavity) and ~400 ?(3) (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala-Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared with wild-type enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100-103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine K(M) but unaltered k(cat) values. The altered K(M) values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to wild-type enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate that the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provide insights into specific reversible inhibitor design for these membrane-bound enzymes.  相似文献   

9.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

10.
Kinetic analysis has shown that isoquinoline, papaverine and berberine act as reversible competitive inhibitors to muscle lactate dehydrogenase and mitochondrial malate dehydrogenase with respect to the coenzyme NADH. The inhibitor constants Ki vary from 7.5 microM and 12.6 microM berberine interaction with malate dehydrogenase and lactate dehydrogenase respectively to 91.4 microM and 196.4 microM with papaverine action on these two enzymes. Isoquinoline was a poor inhibitor with Ki values of 200 microM (MDH) to 425 microM (LDH). No inhibition was observed for both enzymes in terms of their respective second substrate (oxaloacetic acid - malate dehydrogenase; pyruvate - lactate dehydrogenase). A fluorimetric analysis of the binding of the three alkaloids show that the dissociation constants (Kd) for malate dehydrogenase are 2.8 microM (berberine), 46 microM (papaverine) and 86 microM (isoquinoline); the corresponding values for lactate dehydrogenase are 3.1 microM, 52 microM and 114 microM. In all cases the number of binding sites averaged at 2 (MDH) and 4 (LDH). The binding of the alkaloids takes place at sites close to the coenzyme binding site. No conformational non equivalence of subunits is evident.  相似文献   

11.
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.  相似文献   

12.
1. The inhibitory effects of tranylcypromine, a nonselective irreversible inhibitor of monoamine oxidase (MAO), on three cytochrome P450 (CYP) enzymes, namely CYP2C9, CYP2C19, and CYP2D6, have been evaluated in vitro. 2. The studies were conducted using cDNA-expressed human CYP enzymes and probe substrates. 3. A range of substrate concentrations was coincubated with a range of tranylcypromine concentrations in the presence of each of the CYP enzymes at 37 degrees C for a predetermined period of time. Product concentrations were quantified by HPLC with UV detection. 4. The results demonstrated that tranylcypromine is a competitive inhibitor of CYP2C19 (Ki = 32 microM) and CYP2D6 (Ki = 367 microM) and a noncompetitive inhibitor of CYP2C9 (Ki = 56 microM). 5. None of these inhibitory effects are considered clinically significant at usual therapeutic doses. However, in certain situations such as high dose tranylcypromine therapy, or in poor metabolizers of CYP2C19 substrates, clinically significant interactions might occur, particularly when tranylcypromine is coadministered with drugs with a narrow therapeutic index.  相似文献   

13.
Oxidative deamination of various biogenic monoamines by Ascaridia galli monoamine oxidase (MAO) was blocked by different mammalian MAO inhibitors, namely, iproniazid, trans-PcP, nialamide and pargyline and the blockade was observed to be time as well as concentration dependent. The binding of inhibitors with chick ascarid MAO was of the irreversible type and the nature of the inhibition was competitive. Pargyline showed lowest I50 (8 microM) and Ki (12 microM) values. Chlorgyline and deprenyl at 100 microM concentration inhibited MAO by about 60 and 40% respectively, indicating the presence of both type A and type B MAO in A. galli.  相似文献   

14.
The effect of guanidinium compounds on the catalytic mechanism of pig kidney and lentil seedling amine oxidases has been investigated by polarographic techniques and spectroscopy. Guanidine does not inhibit the lentil enzyme and is a weak inhibitor for pig kidney amine oxidase (Ki=1 mM), whereas aminoguanidine is an irreversible inhibitor of both enzymes, with a Ki value of 10(-6) M. 1,4-Diguanidino butane (arcaine) is a competitive inhibitor for both pig and lentil amine oxidases. Amiloride is a competitive inhibitor for pig enzyme, but upon prolonged incubation with this drug the enzyme gradually loses its activity in an irreversible manner.  相似文献   

15.
Several reversible inhibitors selective for human monoamine oxidase B (MAO B) that do not inhibit MAO A have been described in the literature. The following compounds: 8-(3-chlorostyryl)caffeine, 1,4-diphenyl-2-butene, and trans,trans-farnesol are shown to inhibit competitively human, horse, rat, and mouse MAO B with K(i) values in the low micromolar range but are without effect on either bovine or sheep MAO B or human MAO A. In contrast, the reversible competitive inhibitor isatin binds to all known MAO B and MAO A with similar affinities. Sequence alignments and the crystal structures of human MAO B in complex with 1,4-diphenyl-2-butene or with trans,trans-farnesol provide molecular insights into these specificities. These inhibitors span the substrate and entrance cavities with the side chain of Ile-199 rotated out of its normal conformation suggesting that Ile-199 is gating the substrate cavity. Ile-199 is conserved in all known MAO B sequences except bovine MAO B, which has Phe in this position (the sequence of sheep MAO B is unknown). Phe is conserved in the analogous position in MAO A sequences. The human MAO B I199F mutant protein of MAO B binds to isatin (K(i) = 3 microM) but not to the three inhibitors listed above. The crystal structure of this mutant demonstrates that the side chain of Phe-199 interferes with the binding of those compounds. This suggests that the Ile-199 "gate" is a determinant for the specificity of these MAO B inhibitors and provides a molecular basis for the development of MAO B-specific reversible inhibitors without interference with MAO A function in neurotransmitter metabolism.  相似文献   

16.
Sodium pseudomonate was shown to be a powerful competitive inhibitor of Escherichia coli B isoleucyl-tRNA synthetase (Ile-tRNA synthetase). The antibiotic competitively inhibits (Ki 6 nM; cf. Km 6.3 microM), with respect top isoleucine, the formation of the enzyme . Ile approximately AMP complex as measured by the pyrophosphate-exchange reaction, and has no effect on the transfer of [14C]isoleucine from the enzyme . [14C]Ile approximately AMP complex to tRNAIle. The inhibitory constant for the pyrophosphate-exchange reaction was of the same order as that determined for the inhibition of the overall aminoacylation reaction (Ki 2.5 nM; cf. Km 11.1 microM). Sodium [9'-3H]pseudomonate forms a stable complex with Ile-tRNA synthetase. Gel-filtration and gel-electrophoresis studies showed that the antibiotic is only fully released from the complex by 5 M-urea treatment or boiling in 0.1% sodium dodecyl sulphate. The molar binding ratio of sodium [9'-3H]pseudomonate to Ile-tRNA synthetase was found to be 0.85:1 by equilibrium dialysis. Aminoacylation of yeast tRNAIle by rat liver Ile-tRNA synthetase was also competitively inhibited with respect to isoleucine, Ki 20 microM (cf. Km 5.4 microM). The Km values for the rat liver and E. coli B enzymes were of the same order, but the Ki for the rat liver enzyme was 8000 times the Ki for the E. coli B enzyme. This presumably explains the low toxicity of the antibiotic in mammals.  相似文献   

17.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

18.
The effect of the myo-inositol 1,4,5-trisphosphate (IP3) analogue, myo-inositol 1,4,5-trisphosphorothioate (IPS3) on the dephosphorylation of D-5-[32P]IP3 by the 5-phosphatase from human erythrocyte membranes has been investigated. DL-IPS3 was found to act as a competitive inhibitor with a Ki of 6 microM, making it the most potent inhibitor currently available for this enzyme. L-IP3 inhibited the enzyme with a Ki of 124 microM and was more potent than D-2,3-diphosphoglycerate (Ki 978 microM).  相似文献   

19.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

20.
Abstract: The activities of monoamine oxidase A (MAO A) and monoamine oxidase B (MAO B) represent two independent types of substrate binding site, as indicated by experiments with selective inhibitors and also by substrate competition. We have tried to determine whether A and B active sites of human brain and liver MAO are located on physically separable enzyme forms or as subunits in large membrane-bound complexes. MAO was extracted from several sources by a procedure that was designed to give solubilized enzyme in high-speed supernatants, with ratios of MAO A/MAO B activities similar to those in initial crude homogenates. This solubilized enzyme gave gel filtration profiles that suggested the presence of large molecular complexes. Affinity binding experiments indicated that both MAO A and B activities may occur on the same complexes in tissues that initially contain both activities. These complexes were broken down to enzymatically active subunits by treatment with either low concentrations of sodium dodecyl sulfate, with phospholipase A2, or with a combination of both agents. Results of this study support a concept of MAO as part of a membrane unit in which A and B are two distinct enzymes embedded in a phospholipid structure. The enzymatic activity of MAO A is critically dependent on associated phospholipids, whereas that of MAO B is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号