首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/106 cells followed by a period of stable conversion of about 100 pmol/h/106 cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo‐tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver. Biotechnol. Bioeng. 2012; 109: 3172–3181. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

3.
An N-terminally modified form of the Arabidopsis NADPH-cytochrome P450 ATR2 (ATR2mod) was expressed from the tactac promoter in Escherichia coli to obtain high yields of the enzyme. The N-terminal modification eliminates the predicted chloroplast transit peptide of ATR2 allowing for more efficient expression. ATR2mod was purified from membrane extracts using a 2',5'-ADP-agarose affinity column. The specific activity of the purified ATR2mod for cytochrome c reduction was 9.4 micromol min(-1) mg(-1) and the K(m) for cytochrome c reduction was 15 +/- 2 microM. The purified NADPH-cytochrome P450 reductase was able to support function of CYP79B2.  相似文献   

4.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

5.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

6.
A rapid and sensitive high-performance liquid chromatographic method was developed for determination of diclofenac and its major metabolite, 4'-hydroxydiclofenac, in serum from rats treated with diclofenac. The method is simple with a one-step extraction procedure, isocratic HPLC separation, and UV detection at 280 nm. Use of N-phenylanthranilic acid as the internal standard provided good accuracy without interference by endogenous compounds or 5-hydroxydiclofenac, another metabolite of interest. Limits of detection for diclofenac and 4'-hydroxydiclofenac were 0.0225 and 0.0112 microg/ml, respectively. Average extraction efficiencies of diclofenac, 4'-hydroxydiclofenac, and the internal standard were >/=76%. The method was applied to serum collected at 3h after rats were treated with an experimentally useful dosage range of 3, 10 and 50mg/kg diclofenac. Recovery (as a percentage of dose) for the 4'-hydroxy metabolite in serum was found to consistently average from 0.10 to 0.12% following each dosage, whereas recovery of diclofenac in serum declined from 0.45 to 0.37%. Thus, the method is suitable for measurement of a major diclofenac metabolite in experimental studies.  相似文献   

7.
The bacterium Actinoplanes sp. ATCC 53771 is known to perform drug metabolism of several xenobiotics similarly to humans. We identified a cytochrome P450 enzyme from this strain, CYP107E4, and expressed it in Escherichia coli using the pET101 vector. The purified enzyme showed the characteristic reduced-CO difference spectra with a peak at 450 nm, indicating the protein is produced in the active form with proper heme incorporation. The CYP107E4 enzyme was found to bind the drug diclofenac. Using redox enzymes from spinach, the reconstituted system is able to produce hydroxylated metabolites of diclofenac. Production of the human 4′-hydroxydiclofenac metabolite by CYP107E4 was confirmed, and a second hydroxylated metabolite was also produced.  相似文献   

8.
Kim MJ  Kim Y 《Molecules and cells》1999,9(5):470-475
Reduced form of nicotineamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase was solubilized from a microsomal fraction of Gentiana triflora flowers by 3-[(3 Cholamidopropyl)-dimethylammonio]-1-propane sulfonate detergent and purified to electrophoretic homogeneity. The purification was achieved by adenosine 2', 5'-bisphosphate-Sepharose chromatography, followed by high-performance anion-exchange chromatography. A Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. Western blot analysis showed that the purified protein cross-reacted with polyclonal antibody raised against rabbit anti-Gentiana triflora NADPH-cytochrome P450 reductase antibodies. The temperature and pH optimum for reduction of cytochrome c was 25 degrees C and 7.4 respectively. The Km values for the binding of NADPH and cytochrome c were 9.4 and 3.2 microM, respectively. In this paper, we present some results of the purification and partial characterization of microsomal NADPH-cytochrome P450 reductase from Gentiana triflora flowers.  相似文献   

9.
Human lymphoblastoid cell lines transgenic for human CYP450s were evaluated for the identification of toxic metabolites of the anticonvulsant drug carbamazepine (CBZ). Human CYP450 isoforms expressed by these cell lines included 1A1, 1A2, 2E1, 2A6 and 3A4. A dose-dependent inhibition of population growth from 50–200 g/ml CBZ was detected by measuring cell number and respiration. The inhibition increased with the growth rate of the various lines, which correlated inversely with the presence of CYP450s, and may have been caused by CBZ itself. Cytotoxicity was observed only at the highest dose and in the line lacking transfected CYP450s. Microsomal preparations from hCYP3A4/OR cells converted CBZ into its principal oxidative metabolite, carbamazepine-10,11-epoxide (CBZ-E), at a rate of 630 pmol/min per mg protein, confirming a major role of CYP3A4 in this reaction. However, no CBZ-E (or any metabolite) was recovered from any whole-cell incubation even though hCYP3A4 cells readily converted testosterone to 6ß-hydroxytestosterone. This suggests that differences exist between whole-cell and microsomal preparations of lymphoblastoid cells in their ability to metabolize CBZ.Abbreviations BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide - CBZ carbamazepine - CBZ-E carbamazepine-10, 11-epoxide - CYP450 cytochrome P450 - CYP3A4 cytochrome P450, isoform 3A4 - DMSO dimethyl sulfoxide - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - MTT (3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyl)tetrazolium - SIM selected-ion monitoring - TMS trimethylsilyl  相似文献   

10.
A comparison of the oxidations of diclofenac with microsomes of yeasts expressing various human liver cytochromes P450 showed that P450 2C9 regioselectively led to 4'-hydroxy diclofenac (4'-OHD) whereas P450 3A4 only led to 5-hydroxy diclofenac (5-OHD). P450 2C19, 2C18, and 2C8 led to the simultaneous formation of 4'-OHD and 5-OHD (respective molar ratios of 1.3, 0.37, and 0.17), and P450 1A1, 1A2, 2D6, and 2E1 failed to give any detectable hydroxylated metabolite under identical conditions. P450 2C9 was found to be much more efficient for diclofenac hydroxylation than all the other P450s tested (k(cat)/K(M) of 1.6 min(-1) microM(-1) instead of 0.025 for the second more active P450), mainly because of markedly lower K(M) values (15 +/- 8 instead of values between 170 and 630 microM). Oxidation of diclofenac with chemical model systems of cytochrome P450 based on iron porphyrin catalysts exclusively led to the quinone imine derived from two-electron oxidation of 5-OHD, in an almost quantitative yield. Two derivatives of diclofenac lacking its COO(-) function were then synthesized; their oxidation by recombinant human P450 2Cs always led to a major product coming from their 5-hydroxylation. Substrate 2, which derives from reduction of the COO(-) function of diclofenac to the CH(2)OH function, was studied in more detail. All the P450s tested (1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, and 3A4) almost exclusively led to its 5-hydroxylation. P450s of the 2C subfamily were found to be the most efficient catalysts for this reaction, with k(cat)/K(M) values between 0.2 and 1.6 min(-1) microM(-1). Oxidation of 2 with an iron porphyrin-based chemical model of cytochrome P450 also led to a product derived from the oxidation of 2 at position 5. These results show that oxidation of diclofenac and its derivative 2, either with chemical model systems of cytochrome P450 or with recombinant human P450s, generally occurs at position 5. This position, para to the NH group on the more electron-rich aromatic ring of diclofenac derivatives, is thus, as expected, the privileged site of reaction of electrophilic, oxidant species. The most spectacular exception to this chemoselective 5-oxidation of diclofenac derivatives was found for oxidation of diclofenac itself with P450 2C9 (and P450 2C19 and 2C18 to a lesser extent), which only led to 4'-OHD. A likely explanation for this result is a strict positioning of diclofenac in the P450 2C9 active site, via its COO(-) function, to completely orientate its hydroxylation toward position 4', which is not chemically preferred. P450 2C19, 2C18, and 2C8 would not lead to such a strict positioning as they give mixtures of 4'-OHD and 5-OHD. The above results show that diclofenac derivatives are interesting tools to compare the active site topologies of human P450 2Cs.  相似文献   

11.
We demonstrated earlier that the heme in cytochrome P450 enzymes of the CYP4A family is covalently attached to the protein through an I-helix glutamic acid residue [Hoch, U., and Ortiz de Montellano, P. R. (2001) J. Biol. Chem. 276, 11339-11346]. As the critical glutamic acid residue is conserved in many members of the CYP4F class of cytochrome P450 enzymes, we investigated covalent heme binding in this family of enzymes. Chromatographic analysis indicates that the heme is covalently bound in CYP4F1 and CYP4F4, which have the required glutamic acid residue, but not in CYP4F5 and CYP4F6, which do not. Catalytic turnover of CYP4F4 with NADPH-cytochrome P450 reductase shows that the heme is covalently bound through an autocatalytic process. Analysis of the prosthetic group in the CYP4F5 G330E mutant, into which the glutamic acid has been reintroduced, shows that the heme is partially covalently bound and partially converted to noncovalently bound 5-hydroxymethylheme. The modified heme presumably arises by trapping of a 5-methyl carbocation intermediate by a water molecule. CYP4F proteins thus autocatalytically bind their heme groups covalently in a process that requires a glutamic acid both to generate a reactive (cationic) form of the heme methyl and to trap it to give the ester bond.  相似文献   

12.
The aim of the study was to evaluate the effect of acetaminophen (APAP) and/or trichloroethylene (TRI) on the liver cytochrome P450-dependent monooxygenase system, CYP2E1 and CYP1A2 (two important P450 isoforms), and liver glutathione (GSH) content in rats. Rats were given three different doses of APAP (250, 500 and 1000 mg/kg b...) and then the above-mentioned parameters were measured for 48 h. The lowest APAP dose produced small changes in the cytochrome P450 content of liver. At 500 mg/kg APAP increased the cytochrome P450 content to 230% of the control. The inductive effect was seen at 1000 mg/kg dose but at 24 h and later. NADPH-cytochrome P450 reductase activity was the highest after the lowest dose of APAP, while after the highest dose it was equal to the control value. TRI increased both the cytochrome P450 content and the NADPH-cytochrome P450 reductase activity. When TRI was combined with APAP, both these parameters increased in the first hours of observation, but they returned to the control values at 24 h. When APAP was given at 250 mg/kg, GSH levels decreased to 55% of the control at 8 h and returned to the control values at 24 h. The higher doses of APAP decreased GSH levels more than the lowest dose, but after 24 h GSH levels did not differ from those of the control. When TRI was given at 250 mg/kg, the GSH levels decreased to 68% of the control at 2 h and then they increased gradually and tended to exceed the control values at 48 h. The effect of TRI combined with APAP on the level of GSH was virtually the same as that of APAP alone given at 500 mg/kg.  相似文献   

13.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

14.
The identification and formation of 20-aldehyde leukotriene B4   总被引:3,自引:0,他引:3  
Microsomes of human polymorphonuclear leukocytes (PMN) in the presence of 100 microM NADPH converted 0.6 microM leukotriene B4 (LTB4) to 20-OH-LTB4 (retention time = 18.0 min) and to two additional compounds designated I (retention time = 16.8 min) and II (retention time = 9.6 min) as analyzed by reverse-phase high performance liquid chromatography (HPLC). Compounds I and II were also formed from the reaction of 1.0 microM 20-OH-LTB4, PMN microsomes, and 100 microM NADPH; the identity of compound II was confirmed as 20-COOH-LTB4 by gas chromatography-mass spectrometry. Equine alcohol dehydrogenase in the presence of 100 microM NAD+ in 0.2 M glycine buffer (pH 10.0) converted 20-OH-LTB4 to 20-aldehyde (CHO) LTB4, which coeluted with compound I on reverse-phase HPLC. In the presence of 100 microM NADH in 50 mM potassium phosphate buffer (pH 6.5), equine alcohol dehydrogenase reduced both 20-CHO-LTB4 and compound I to 20-OH-LTB4, indicating the identity of compound I as 20-CHO-LTB4. Gas chromatography-mass spectrometry of trideuterated O-methyl-oxime trimethylsilyl ether methyl ester derivative of 3H-labeled compound I definitively established compound I as 20-CHO-LTB4. Addition of immune IgG to cytochrome P-450 reductase or 1.0 mM SKF-525A completely inhibited the formation of 20-CHO-LTB4 from 20-OH-LTB4, indicating that the reaction was catalyzed by a cytochrome P-450. LTB5 (3.0 microM), a known substrate for cytochrome P-450LTB and a competitive inhibitor of LTB4 omega-oxidation, completely inhibited the omega-oxidation of 1.5 microM 20-OH-LTB4 to 20-CHO-LTB4, indicating that the cytochrome P-450 was P-450LTB. Conversion of 1.0 microM 20-CHO-LTB4 to 20-COOH-LTB4 by PMN microsomes was also dependent on NADPH and inhibited by antibody to cytochrome P-450 reductase, 1.0 mM SKF-525A, or 5.0 microM LTB5, indicating that this reaction was also catalyzed by cytochrome P-450LTB. These results identify the novel metabolite 20-CHO-LTB4 and indicate that cytochrome P-450LTB catalyzes three sequential omega-oxidations of LTB4 leading to the formation of 20-COOH-LTB4 via 20-OH-LTB4 and 20-CHO-LTB4 intermediates.  相似文献   

15.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

16.
At least two substitutions were made at each of five amino acid residues in rat cytochrome P450 2B1 that align to residues of known importance in other P450s. The mutants were histidine tagged for purification from Escherichia coli, and the proteins were assessed for testosterone and 7-alkoxycoumarin oxidation. Alteration of each of the sites studied, Phe-115, Ser-294, Phe-297, Ala-298, and Leu-362, was found to affect overall enzyme activity or the metabolite profile. In particular, most of the mutants, excluding F297A, A298G, and L362F, exhibited significantly altered ratios of 16alpha-hydroxytestosterone:16beta-hydroxytestosterone, with the most dramatic alteration being displayed by A298V. Four 7-butoxycoumarin metabolites were produced by CYP2B1, of which two, 7-hydroxycoumarin and 7-(3-hydroxybutoxy)coumarin, were formed at nearly equal rates. Several mutants, F115A, F297A, F297I, and A298V, exhibited an increased predominance of one of the metabolites. The results from this study illustrate the conservation of functionally important residues across P450 subfamilies and families.  相似文献   

17.
Oligomers and monomers of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) isolated from the liver microsomes of phenobarbital-treated rabbits were examined for physicochemical properties and catalytic activities. As measured using laser correlation spectroscopy the particle sizes of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers were 14.8 +/- 1.7 and 19.2 +/- 1.4 nm, respectively. Twenty-four-hour incubation with Emulgen 913 at 4 degrees C at a molar ratio of 1:100 led to the monomerization of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers, the particle sizes diminishing to 6.1 +/- 1.3 and 5.2 +/- 0.4 nm, respectively. The thermal stability of NADPH-cytochrome P450 reductase monomers was the same as that of oligomers, whereas cytochrome P450 LM2 monomers were less thermostable than oligomers and cytochrome P450 in microsomes. Similar to cytochrome P450 LM2 oligomers and the microsomal hemoprotein, cytochrome P450 LM2 monomers formed complexes with type I and II substrates, but with Kd values higher than those of microsomes and cytochrome P450 LM2 oligomers. Kinetic parameters (Vmax and Km) of H2O2- and cumene hydroperoxide-dependent oxidation of benzphetamine and aniline in the presence of cytochrome P450 LM2 oligomers, monomers, and microsomes were determined. Peroxidase activities of the oligomers and monomers were the same, but were lower than those of microsomes. Thus the substitution of protein-protein interactions in cytochrome P450 LM2 oligomers with protein-detergent interactions in the monomers did not influence the catalytic properties of the hemoprotein.  相似文献   

18.
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.  相似文献   

19.
The cDNA of cytochrome P450 (CYP) 2C43 was cloned from cynomolgus monkey liver by RT-PCR. The deduced amino acid sequence showed 93% and 91% identity to human CYP2C9 and CYP2C19, respectively. The cDNA was expressed in Escherichia coli and purified by a series of chromatography steps, yielding a specific content of 11.5 nmol P450/mg protein. The substrate specificity of the purified CYP2C43 was examined in a reconstitution system comprising NADPH-P450 reductase, lipid, cytochrome b(5) and CYP2C marker substrates. The purified CYP2C43 showed high activity for testosterone 17-oxidation and progesterone 21-hydroxylation, which were also observed for CYP2C19 but not CYP2C9. In addition, CYP2C43 showed activity for (S)-mephenytoin 4'-hydroxylation, a marker reaction for CYP2C19. With CYP2C9 marker substrates, CYP2C43 exhibited low activity for diclofenac 4'-hydroxylation and no activity for tolbutamide p-methylhydroxylation. Therefore, in terms of substrate specificity, our results indicate that CYP2C43 is similar to CYP2C19, rather than CYP2C9.  相似文献   

20.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号