首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of membrane-impermeable sulfhydryl reagents on glucose-specific enzyme II (EIIGlc) activity has been studied in Salmonella typhimurium whole cells and in properly sealed inverted cytoplasmic membrane vesicles. Glutathione N-hexylmaleimide and N-polymethylenecarboxymaleimides inactivate methyl alpha-D-glucopyranoside (alpha-MeGlc) transport and phosphorylation in whole cell preparations at a dithiol that can be protected by oxidizing reagents, trivalent arsenicals, or phosphorylation of EIIGlc. Accessibility to this activity-linked site is restricted to small apolar reagents or to polar reagents with a hydrophobic spacer between the polar group and the reactive maleimide moiety. These same reagents inactivate alpha-MeGlc phosphorylation in inverted cytoplasmic membrane vesicles. Inhibition results from reaction at a dithiol that can be protected by nonpermeant mercurials, oxidants, and arsenicals as well as by phosphorylation of EII. The characteristics of this site are virtually identical with those of the activity-linked dithiol elucidated in intact cells. No evidence could be found for a second activity-linked site on the other side of the membrane when the permeable reagent N-ethylmaleimide was used. Since only one activity-linked dithiol can be detected with sealed inverted membrane vesicles or intact cells and it is accessible to membrane-impermeable sulfhydryl reagents from both sides of the cytoplasmic membrane, we suggest that it is located in a channel constructured by the carrier and that the channel spans the membrane. A second dithiol, not essential for activity, is located near the outer surface of the cytoplasmic membrane.  相似文献   

2.
(1) The effect of four active antisera against plastocyanin on Photosystem I-driven electron transport and phosphorylation was investigated in spinach chloroplasts. Partial inhibition of electron transport and stimulation of plastocyanin-dependent phosphorylation were sometimes observed after adding amounts of antibodies which were in large excess and not related to the plastocyanin content of the chloroplasts. This indicates effects of the antibodies on the membrane. (2) The antibodies against plastocyanin neither directly nor indirectly agglutinated unbroken chloroplast membranes. (3) The plastocyanin content of right-side-out and inside-out thylakoid vesicles isolated by aqueous polymer two-phase partition from chloroplasts disrupted by Yeda press treatment was determined by quantitative rocket electroimmunodiffusion. Right-side-out vesicles retained about 25%, inside-out vesicles none of the original amount of plastocyanin. (4) The effect of externally added plastocyanin on the reduction of P-700 was studied by monitoring the absorbance changes at 703 nm after a long flash. In inside-out vesicles P-700 was reduced by the added plastocyanin but not in right-side-out vesicles and class II chloroplasts. These results provide strong evidence for a function of plastocyanin at the internal side of the thylakoid membrane.  相似文献   

3.
The orientation of the lactose:H+ carrier of Escherichia coli in various preparations of native and reconstituted vesicles is determined with two impermeant, macromolecular probes: antibodies directed against the C-terminal decapeptide of the carrier and carboxypeptidase A (EC 3.4.17.1). Two methods are employed. Method I is based upon the digestion of all accessible and, therefore, presumably external, C termini of the carrier with carboxypeptidase A and detection of the remaining, internal C termini with 125I-labelled anti-(C-terminus) antibody after electrophoresis of the carrier in the presence of sodium dodecyl sulfate and transfer to nitrocellulose filters. Method II is based upon the binding of 125I-labelled anti-(C-terminus) antibody to the external C termini of the carrier in vesicles and the subsequent isolation of bound antibody by centrifugation. The labelled antibodies are calibrated using a preparation of inside-out vesicles prepared by high-pressure lysis of strain T206. The carrier content is determined by substrate binding. Because the C terminus of the carrier is known to reside on the cytoplasmic side of the membrane, these methods can also be used to determine the sidedness of various preparations of membrane vesicles. Spheroplasts are confirmed to contain carrier molecules of a single orientation, corresponding to that in right-side-out vesicles. In contrast, in purified cytoplasmic membrane vesicles and in crude membrane preparations obtained by sonication or by high-pressure lysis, 96% of the C termini are accessible to carboxypeptidase A, even after repeated sonication. This implies that nearly all carrier molecules in these preparations possess an orientation opposite to that in the cell or in right-side-out vesicles. In proteoliposomes containing carrier reconstituted or purified and reconstituted by two different methods, only 48% of the carrier molecules are oriented in the same way as in the cell. Subjecting such proteoliposomes to cycles of freezing and thawing or to sonication results in a reshuffling of carrier molecules between the inside-out and right-side-out populations while maintaining 41% in the right-side-out orientation. Digestion of the C terminus of the carrier with carboxypeptidase A does not alter either galactoside binding or countertransport. Thus carrier molecules of the inside-out orientation cannot be selectively inactivated. Additionally, an antiserum directed against the purified carrier is demonstrated to contain nearly exclusively anti-(C-terminus) antibodies, which can, in principle, be used in Method I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Nucleosides cross the human erythrocyte membrane by a facilitated-diffusion process which is selectively inhibited by nanomolar concentrations of nitrobenzylthioinosine (NBMPR). The chemical asymmetry of the transporter was investigated by studying the effects of p-chloromercuriphenyl sulphonate (PCMBS) on uridine transport and high-affinity NBMPR binding in inside-out and right-side-out membrane vesicles, unsealed erythrocyte ghosts and intact cells. PCMBS was an effective inhibitor of the transporter (50% inhibition at 30 microM), but only when the organomercurial had access to the cytoplasmic membrane surface. PCMBS inhibition of NBMPR binding to ghosts was reversed by incubation with dithiothreitol. Both uridine and NBMPR were able to protect the transporter against PCMBS inhibition.  相似文献   

5.
Plasma membrane preparations of high purity (about 95%) are easily obtained by partitioning in aqueous polymer two-phase systems. These preparations, however, mainly contain sealed right-side-out (apoplastic side out) vesicles. Part of these vesicles have been turned inside-out by freezing and thawing, and sealed inside-out and right-side-out vesicles subsequently separated by repeating the phase partition step. Increasing the KCI concentration in the freeze/thaw medium as well as increasing the number of freeze/thaw cycles significantly increased the yield of inside-out vesicles. At optimal conditions, 15 to 25% of total plasma membrane protein was recovered as inside-out vesicles, corresponding to 5 to 10 milligrams of protein from 500 grams of sugar beet (Beta vulgaris L.) leaves. Based on enzyme latency, trypsin inhibition of NADH-cytochrome c reductase, and H+ pumping capacity, a cross-contamination of about 20% between the two fractions of oppositely oriented vesicles was estimated. Thus, preparations containing about 80% inside-out and 80% right-side-out vesicles, respectively, were obtained. ATPase activity and H+ pumping were both completely inhibited by vanadate (Ki ≈ 10 micromolar), indicating that the fractions were completely free from nonplasma membrane ATPases. Furthermore, the polypeptide patterns of the two fractions were close to identical, which shows that the vesicles differed in sidedness only. Thus, preparations of both inside-out and right-side-out plasma membrane vesicles are now available. This permits studies on transport, signal transduction mechanisms, enzyme topology, etc., using plasma membrane vesicles of either orientation.  相似文献   

6.
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.  相似文献   

7.
The Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles can catalyze the exchange of Ca2+ on either side of the sarcolemmal membrane for Na+ on the opposing side. Little is known regarding the relative affinities of Na+ and Ca2+ for exchanger binding sites on the intra- and extracellular membrane surfaces. We have previously reported (Philipson, K.D. and Nishimoto, A.Y. (1982) J. Biol. Chem. 257, 5111-5117) a method for measuring the Na+-Ca2+ exchange of only the inside-out vesicles in a mixed population of sarcolemmal vesicles (predominantly right-side-out). We concluded that the apparent Km(Ca2+) for Na+i-dependent Ca2+ uptake was similar for inside-out and right-side-out vesicles. In the present study, we examine in detail Na+o-dependent Ca2+ efflux from both the inside-out and the total population of vesicles. To load vesicles with Ca2+ prior to measurement of Ca2+ efflux, four methods are used: 1, Na+-Ca2+ exchange; 2, passive Ca2+ diffusion; 3, ATP-dependent Ca2+ uptake; 4, exchange of Ca2+ for Na+ which has been actively transported into vesicles by the Na+ pump. The first two methods load all sarcolemmal vesicles with Ca2+, while the latter two methods selectively load inside-out vesicles with Ca2+. We are able to conclude that the dependence of Ca2+ efflux on the external Na+ concentration is similar in inside-out and right-side-out vesicles. Thus the apparent Km(Na+) values (approximately equal to 30 mM) of the Na+-Ca2+ exchanger are similar on the two surfaces of the sarcolemmal membrane. In other experiments, external Na+ inhibited the Na+i-dependent Ca2+ uptake of the total population of vesicles much more potently than that of the inside-out vesicles. Apparently Na+ can compete for the Ca2+ binding site more effectively on the external surface of right-side-out than on the external surface of inside-out vesicles. Thus, although affinities for Na+ or Ca2+ (in the absence of the other ion) appear symmetrical, the interactions between Na+ and Ca2+ at the two sides of the exchanger are not the same. The Na+-Ca2+ exchanger is not a completely symmetrical transport protein.  相似文献   

8.
A Yamaguchi  K Adachi  T Sawai 《FEBS letters》1990,265(1-2):17-19
A site-directed antibody was generated against a synthetic polypeptide corresponding to the 14 amino acid residues of the carboxyl terminus of the Tn10 TetA protein. The antibody reacted preferentially with inside-out vesicles, rather than right-side-out vesicles, prepared from Escherichia coli cells harboring transposon Tn10. When inside-out vesicles were treated with trypsin, the TetA protein was completely digested in the vicinity of the carboxyl terminus, as judged on immunoblot analysis using the antibody. In contrast, when right-side-out vesicles were treated with trypsin, the TetA protein was hardly digested. These results indicate that the carboxyl terminus of TetA is exposed to the cytoplasmic side of the membrane.  相似文献   

9.
Inside-out and right-side-out thylakoid vesicles were isolated from spinach chloroplasts by aqueous-polymer two-phase (dextran/polyethylene glycol) partitioning. Externally added plastocyanin stimulated the whole-chain and PSI electron transport rates in the inside-out thylakoid vesicles by about 500 and 350%, respectively, compared to about 50% stimulation for both assays in the fraction enriched in right-side-out vesicles. No apparent stimulation by plastocyanin was observed in unbroken Class II thylakoids. The electron transport between PSII and PSI in inside-out thylakoid vesicles appears to be interrupted due to plastocyanin release from the thylakoids by the Yeda press treatment, but it was restored by externally added plastocyanin. The P700 content of the inside-out membrane preparations, measured by chemical and photochemical methods, was 1 P700 per 1100 to 1500 chlorophylls while it was about 1 P700 per 500 chlorophylls for the right-side-out vesicles. The data presented support the concept of lateral heterogeneity of PS I and II in thylakoid membranes, but does not support a virtual or total absence of PSI in the appressed grana partitions. Further, the heterogeneity does not appear to be as extreme as suggested earlier. Although PSI is somewhat depleted in the appressed grana membrane region, there is adequate photochemically active P700, when sufficient plastocyanin is available, to effectively couple PSI electron transfer with the preponderant PSII in linear electron transport.  相似文献   

10.
An uncoupler-sensitive active transport of sulphate into membrane vesicles prepared from the plasma membrane of Paracoccus denitrificans (previously Micrococcus denitrificans) can be driven by respiration or by a trans-membrane pH gradient (alkaline inside) generated by the addition either of KCL ( in the presence of nigericin) or of NH4CL. Valinomycin does not substitute for nigericin. Respiration-driven transport is observed in right-side-out vesicles but not in inside-out vesicles, whereas transport driven by the addition of KCL (in the presence of nigericin) or of NH4CL is observed in both types of membrane vesicle. The active transport of sulphate into these vesicles is shown to be carrier-mediated by its sensitivity to thiol-group reagents. It is proposed that the sulphate carrier in the plasma membrane of P. denitrificans operates by a mechanism of electroneutral proton symport, and is capable of actively transporting sulphate in either direction across the plasma membrane, but that in whole cells respiration-driven proton expulsion drives the accumulative uptake of sulphate.  相似文献   

11.
When purified D-amino acid dehydrogenase [Olsiewski, P. J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 255, 4487] is incubated with right-side-out membrane vesicles from Escherichia coli, the enzyme binds to the membrane in a time- and concentration-dependent manner. As a result, the vesicles acquire the ability to oxidize D-alanine and catalyze D-alanine-dependent active transport. Similarly, incubation of D-amino acid dehydrogenase with inside-out vesicles results in binding of enzyme and D-alanine oxidase activity. Antibody inhibition studies indicate that the enzyme is bound exclusively to the inner cytoplasmic surface of the membrane in native vesicles (i.e., membrane vesicles prepared from cells induced for D-amino acid dehydrogenase). In contrast, similar studies with reconstituted vesicles demonstrate that enzyme binds to the surface exposed to the medium regardless of the orientation of the membrane. Thus, enzyme bound to right-side-out vesicles is located on the opposite side of the membrane from where it is normally found. Remarkably, in the presence of D-alanine, reconstituted right-side-out and inside-out vesicles generate electrochemical proton gradients of similar magnitude but opposite polarity, indicating that enzyme bound to either surface of the membrane is physiologically functional. The results suggest that vectorial proton translocation via the respiratory chain occurs at a point distal to the site where electrons enter the respiratory chain from the primary dehydrogenase, a conclusion that is inconsistent with the notion that the dehydrogenase forms part of a proton-translocating loop.  相似文献   

12.
The synthetic decapeptide NH2-Cys-Val-Gly-Ala-Val-Ser-Asp-Val-Lys-Ala-COOH (designated MBct10), which corresponds to the carboxyl terminus of the melibiose carrier of Escherichia coli, was synthesized and used to raise antibodies in a rabbit. Anti-MBct10 antibodies recognizes the normal melibiose carrier but not a truncated carrier lacking 14 carboxyl-terminal amino acids. Thus the antibodies are specific for the carboxyl terminus of the carrier and not for other domains of the protein. When right-side-out and inside-out membrane vesicles were probed with anti-MBct10 serum, only the inside-out vesicles bound antibody. The carboxyl terminus of the melibiose carrier protein is therefore exposed on the cytoplasmic surface of the membrane. The co-localization of both NH2- and carboxyl termini to the cytoplasmic surface dictates that the protein cross the membrane an even number of times. These data together with hydrophobicity analysis support a topological model for the melibiose carrier with 10 or 12 transmembrane domains.  相似文献   

13.
1. Impermeable inside-out and right-side-out vesicles were prepared from membranes of human erythrocytes. During preparation of each kind of impermeable vesicle, permeable vesicles were also obtained. 2. Incubation of vesicles with [gamma-32P]ATP at 37 degrees C for periods of up to 1 hr did not change the topography or the permeability of the vesicles. 3. Vesicles incorporated labeled phosphate from [gamma-32P]ATP into both diphosphoinositide and triphosphoinositide, but impermeable inside-out vesicles incorporated significantly more nuclide than did right-side-out vesicles. 4. Permeable vesicles derived during the preparation of inside-out vesicles were as active as impermeable inside-out vesicles in the incorporation of labeled phosphate into the polyphosphoinositides. However, permeable vesicles derived during the preparation of right-side out vesicles were not as active. 5. Impermeable right-side-out vesicles, treated with 0.01 percent saponin, incorporated labeled phosphate into the polyphosphoinositides at a level comparable to that of impermeable inside-out vesicles. 6. These data show that the enzymes involved in metabolism of diphosphoinositide and triphosphoinositide are located on the cytoplasmic surface of the erythrocyte membrane.  相似文献   

14.
Monoclonal antibodies 4B1 and 5F7 bind to distinct, nonoverlapping epitopes in the lac carrier protein. By use of immunofluorescence microscopy and radiolabeled monoclonal antibodies and Fab fragments, it is shown that both 4B1 and 5F7 bind to spheroplasts and to right-side-out vesicles, but only to a small extent to inside-out vesicles. Clearly, therefore, the lac carrier protein has an asymmetric orientation within the cytoplasmic membrane of Escherichia coli, and both epitopes are located on the periplasmic surface. In right-side-out vesicles, radiolabeled 4B1 binds with a stoichiometry of 1 mol of antibody per 2 mol of lac carrier protein, while radiolabeled 4B1 Fab fragments bind 1:1. Importantly, the intact antibody and its Fab fragments bind to proteoliposomes reconstituted with purified lac carrier protein with a stoichiometry very similar to that observed in right-side-out membrane vesicles. Thus, it seems highly likely that the orientation of the lac carrier protein in the reconstituted system is similar to that in the bacterial cytoplasmic membrane, at least with respect to 4B1 epitope.  相似文献   

15.
J R Dankert  A F Esser 《Biochemistry》1986,25(5):1094-1100
The molecular mechanism of complement-mediated killing of Gram-negative bacteria has yet to be resolved, but it is generally accepted that assembly of the membrane attack complex (MAC) of complement on the outer bacterial membrane is a required step. We have now investigated the effect of the MAC and its precursor complex, C5b-8, on the membrane potential (delta Em) across the inner bacterial membrane. Delta Em of whole cells was measured directly by using a lipophilic cation (tetraphenylphosphonium) that equilibrates with the potential or indirectly by measuring transport of solutes (proline and galactoside), which is dependent on delta Em. Our results indicate that the C5b-8 complex caused a transient collapse of delta Em in the absence of cell killing. Addition of C9 to allow formation of the MAC dissipated delta Em irreversibly, and the cells were killed. Since delta Em is generated across the inner membrane in Gram-negative bacteria, inner membrane vesicles were prepared and membrane potentials were generated either by adding D-lactate to energize the electron-transport chain or by creating a K+ diffusion potential with valinomycin. C9 added in the absence of earlier acting complement proteins had no effect on delta Em of isolated, actively respiring vesicles or on K+ diffusion potentials. In contrast, its C-terminal thrombin fragment (C9b), which has been shown earlier to contain the membrane-active domain of C9, efficiently collapsed delta Em in such vesicles. C9b did not require a specific receptor since it was effective on "right-side-out" and "inside-out" vesicles. These results are interpreted to indicate that a C9-derived fragment deenergizes cells and may be the causative agent for cell death.  相似文献   

16.
Sugar beet (Beta vulgaris L.) leaf plasma membrane vesicles were loaded with an NADH-generating system (or with ascorbate) and were tested spectrophotometrically for their ability to reduce external, membrane-impermeable electron acceptors. Either alcohol dehydrogenase plus NAD+ or 100 millimolar ascorbate was included in the homogenization medium, and right-side-out (apoplastic side-out) plasma membrane vesicles were subsequently prepared using two-phase partitioning. Addition of ethanol to plasma membrane vesicles loaded with the NADH-generating system led to a production of NADH inside the vesicles which could be recorded at 340 nanometers. This system was able to reduce 2,6-dichlorophenolindophenol-3′-sulfonate (DCIP-sulfonate), a strongly hydrophilic electron acceptor. The reduction of DCIP-sulfonate was stimulated severalfold by the K+ ionophore valinomycin, included to abolish membrane potential (outside negative) generated by electrogenic transmembrane electron flow. Fe3+-chelates, such as ferricyanide and ferric citrate, as well as cytochrome c, were not reduced by vesicles loaded with the NADH-generating system. In contrast, right-side-out plasma membrane vesicles loaded with ascorbate supported the reduction of both ferric citrate and DCIP-sulfonate, suggesting that ascorbate also may serve as electron donor for transplasma membrane electron transport. Differences in substrate specificity and inhibitor sensitivity indicate that the electrons from ascorbate and NADH were channelled to external acceptors via different electron transport chains. Transplasma membrane electron transport constituted only about 10% of total plasma membrane electron transport activity, but should still be sufficient to be of physiological significance in, e.g. reduction of Fe3+ to Fe2+ for uptake.  相似文献   

17.
The proteoliposomes prepared from purified proline carrier protein isolated from membrane vesicles of Mycobacterium phlei exhibited an uptake of proline, which was dependent upon a proton gradient generated across the lipid bilayer. Although a proton gradient was generated by the reduction of the entrapped ferricyanide by ascorbate oxidation with benzoquinone serving as a lipid soluble hydrogen carrier, transport of proline was dependent on the addition of sodium ion. The movement of sodium and proline across the artificial membrane resulted in a simultaneous collapse of the proton gradient.  相似文献   

18.
The application of freeze-cleave electron microscopy to whole cells of Escherichia coli revealed that the particles exposed on the resulting two inner membrane faces are asymmetrically distributed. This method can therefore be used to determine the orientation of membrane vesicles from E. coli. Membrane vesicles freshly prepared in potassium phosphate buffer (K(+)-vesicles) by osmotic lysis of spheroplasts consisted almost entirely of right-side-out vesicles. Their size suggested that each cell gives rise to one vesicle. When the membrane vesicles were subjected to one cycle of freezing and thawing, the number of inside-out vesicles rose to about 25%. However, due to the small size of most of the inside-out vesicles, these contribute only 2 to 3% of the total membrane surface area of the preparation. The inside-out vesicles appear to arise from infoldings of the membrane of right-side-out vesicles. They also accumulate within the latter, thus producing multivesicular membrane sacs. Na(+)-vesicles (vesicles prepared in sodium phosphate buffer) subjected to freezing and thawing appeared to lose structural rigidity more than did K(+)-vesicles. In contrast to the membrane vesicles prepared by the osmotic lysis of spheroplasts, those obtained by breaking intact cells by a single passage through a French pressure cell were uniformly very small (only 40 to 110 nm in diameter); approximately 60 to 80% were inside-out. To reconcile the polarity of the membrane vesicles with the enzymic activities of such preparations, we propose that "dislocation" of membrane proteins occurs during osmotic lysis of spheroplasts.  相似文献   

19.
The effect of glutathione, glutathione disulfide and the dithiol reagent phenylarsine oxide on purified soluble as well as reconstituted mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated. Glutathione disulfide and phenylarsine oxide caused an inhibition of transhydrogenase, the extent of which was dependent on the presence of either of the transhydrogenase substrates. In the absence of NADPH glutathione protected partially against inactivation by glutathione disulfide and phenylarsine oxide. In the presence of NADPH glutathione also inhibited transhydrogenase. Reconstituted transhydrogenase vesicles behaved differently as compared to the soluble transhydrogenase and was partially uncoupled by GSSG. It is concluded that transhydrogenase contains a dithiol that is essential for catalysis as well as for proton translocation.  相似文献   

20.
The stoichiometric coupling mechanism of the membrane potential (delta psi) in the reaction of H+/proline symport was investigated kinetically, using cytoplasmic membrane vesicles of the proline carrier-overproducing strain of Escherichia coli MinS/ pLC4 -45. When a delta psi was imposed across the cytoplasmic membrane by respiration, the Michaelis constant of transport (Kt) was lowered to about 1 microM, which was 2 orders of magnitude smaller than that of passive influx and efflux, and the maximum velocity (Vmax) was concomitantly enhanced as an exponential function of delta psi. Thermodynamically, the carrier translocated proline with a stoichiometry of 2 mol of protons versus 1 mol of substrate when driven by a delta psi at pH 8.0. Data on the delta psi dependence of Vmax of proline transport could be explained quantitatively by the Geck-Heinz hypothesis (Geck, P., and Heinz, E. (1976) Biochim, Biophys. Acta 443, 49-63). A symmetrical model of the 2H+/proline symport via formation of a carrier/H+/substrate (CH+H+S) intermediate is proposed. In this model, the effect of delta psi on the Kt was resolved as stimulation of formation of a transport intermediate, whereas the effect of delta psi on the Vmax was explained by enhancement of translocation of loaded carriers between the two sides of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号