首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of palladium and platinum salts (K2PdCl4, K2PtCl4) on bacteriophage F4 and its isolated DNA in genetic transformation is investigated. Both compounds efficiently inactivated the phage and decreased the transforming activity of donor DNA. The palladium salt exhibited the higher activity. The palladium compounds inhibited the transforming activity of native donor DNA to a greater degree. No difference was observed in the degree of inactivation of the transforming activity of native and denatured DNA under the effect of platinum salt. It is suggested that the difference in the transforming activity of donor DNA treated with the tested compounds reflect the pattern of their interactions with nucleic acids.  相似文献   

2.
Three different approaches to constructing biosensing units based on double-stranded (ds) DNA molecules, capable of detecting various biologically active compounds, are considered. The first approach is based on the abnormal optical activity of the liquid-crystalline dispersion formed from ds DNA molecules, modified by relevant physical factors or treated with biologically active compounds. The second one is based on the abnormal optical activity of the liquid-crystalline dispersions formed first from the ds DNA and then treated with coloured biologically active compounds. The third one is based on the abnormal optical activity, specific to particles of the liquid-crystalline dispersions, where the neighbouring DNA molecules are crosslinked by artificial polymeric bridges. These approaches permit the detection of biologically relevant compounds of various origins.  相似文献   

3.
Copper and iron are two widely studied transition metals associated with hydroxyl radical (˙OH) generation, oxidative damage, and disease development. Because antioxidants ameliorate metal-mediated DNA damage, DNA gel electrophoresis assays were used to quantify the ability of ten selenium-containing compounds to inhibit metal-mediated DNA damage by hydroxyl radical. In the Cu(I)/H(2)O(2) system, selenocystine, selenomethionine, and methyl-selenocysteine inhibit DNA damage with IC(50) values ranging from 3.34 to 25.1 μM. Four selenium compounds also prevent DNA damage from Fe(II) and H(2)O(2). Additional gel electrophoresis experiments indicate that Cu(I) or Fe(II) coordination is responsible for the selenium antioxidant activity. Mass spectrometry studies show that a 1?:?1 stoichiometry is the most common for iron and copper complexes of the tested compounds, even if no antioxidant activity is observed, suggesting that metal coordination is necessary but not sufficient for selenium antioxidant activity. A majority of the selenium compounds are electroactive, regardless of antioxidant activity, and the glutathione peroxidase activities of the selenium compounds show no correlation to DNA damage inhibition. Thus, metal binding is a primary mechanism of selenium antioxidant activity, and both the chemical functionality of the selenium compound and the metal ion generating damaging hydroxyl radical significantly affect selenium antioxidant behavior.  相似文献   

4.
Multimodal action of antitumor agents on DNA: the ellipticine series   总被引:2,自引:0,他引:2  
Most cytotoxic anticancer agents interact directly or indirectly with nuclear DNA, the ultimate target for this class of compounds. For a given type of drug both direct and indirect action at the DNA level usually causes various types of interference or damage. This multimodal mechanism of action is well illustrated by antitumor drugs in the ellipticine series which may bind to DNA through intercalation, may undergo covalent binding, may generate oxidizing species, and may interfere with the catalytic activity of topoisomerase II. The antitumor activity of these compounds may, therefore, result from alternative cytotoxic events. The present review summarizes information obtained with ellipticine compounds on the relation between the nature of the drugs' action on DNA and their cytotoxic and/or antitumor activity. The occurrence of topoisomerase-mediated DNA cleavage appears to be responsible for antitumor activity. The capability of the drugs to interfere with the action of topoisomerase II requires the presence of an oxidizable phenolic group on their structure. This feature (or a related one) is shared by all antitumor drugs acting on this enzyme.  相似文献   

5.
The reactivity of copper (II) compounds with several tetradentate ligands towards some spin-trapping reagents was studied in the presence of hydrogen peroxide. The compounds used in this study are roughly divided into two groups based on the reactivity towards 2,2,6,6-tetramethyl-4-piperidinol (and also 2,2,6,6-tetramethyl-4-piperidone), which are trapping agents for singlet oxygen. 1O2(1deltag); The A-group compounds exhibited a high activity to form the corresponding nitrone radical, which was detected by ESR spectroscopy, but corresponding activity of the B-group compounds was very low. The A-group compounds defined as above exhibited high activity for cleavage of DNA (supercoiled) Form I) in the presence of hydrogen peroxide, yielding DNA Form II (relaxed circular) or Form III (linear duplex) under our experimental conditions ([Cu (II)] = 0.1 approximately 0.5 mM). On the other hand, the B-group compounds effected complete degradation of the DNA (double-strand scission) under the same experimental conditions, formation of Form II or Form III DNA was negligible. Two different DNA cleavage patterns observed for A- and B-group compounds were elucidated by the different structural property of the copper (II)-peroxide adducts, which is controlled by the interaction through both DNA and the peripheral group of the ligand system.  相似文献   

6.
7.
Plasmodium cynomolgi DEAD-box DNA helicase 45 (PcDDH45) is an ATP-dependent DNA-unwinding enzyme with intrinsic DNA-dependent ATPase activity and is highly homologous to eIF-4A. In this study, we have further characterized and tested the effect of various DNA-interacting compounds on the DNA-unwinding activity of PcDDH45. The results show that PcDDH45 translocates in the 3' to 5' direction along the bound strand, a replication fork-like structure of the substrate stimulates its DNA-unwinding activity, and it failed to unwind blunt-ended duplex DNA. Of various compounds tested, only cisplatin, 4',6'-diamidino-2-phenylindole, daunorubicin, and nogalamycin were inhibitory to the unwinding activity of PcDDH45 with apparent IC(50) values of 1.0, 4.0, 7.5, and 1.7 microM, respectively. These results suggest that the interaction of these compounds with duplex DNA generate a complex that probably impedes the translocation of PcDDH45, resulting in inhibition of unwinding activity. This study is one of the first to demonstrate the effect of various DNA-binding compounds on a malaria parasite DNA helicase and should make an important contribution to our better understanding of the nucleic acid transactions in the parasite.  相似文献   

8.
Topoisomerase II poisoning and anticancer activity by the organometallic compound [RuCl(2)(C(6)H(6))(dmso)] was shown by us in an earlier study [Biochemistry 38 (1999) 4382]. Since high concentrations of this complex were required to achieve either effects, we have synthesized four derivatives of this complex in which the dimethyl sulphoxide group on the ruthenium atom was replaced with pyridine, 3-aminopyridine, p-aminobenzoic acid, and aminoguanidine. Three of these molecules showed enhanced potency of topoisomerase II poisoning and consequently also showed higher anticancer activity in breast and colon carcinoma cells in vitro. Detailed analysis of the molecular action of these compounds on topoisomerase II activity was carried out using the classical relaxation and cleavage activity of the enzyme, which revealed that the compounds poison topoisomerase II by freezing the enzyme and enzyme-cleaved DNA in a ternary "cleavage complex". The cleavage complex is implicated in the anti-neoplastic activity of these compounds. DNA interaction studies showed that these compounds interact with DNA in much the same way as [RuCl(2)(C(6)H(6))(dmso)], by external binding of the DNA helix. This is unlike most other topoisomerase II poisons, which predominantly interact with DNA through intercalation with the double helix.  相似文献   

9.
Cell-specific DNA delivery offers a great potential for targeted gene therapy. Toward this end, we have synthesized a series of compounds carrying galactose residues as a targeting ligand for asialoglycoprotein receptors of hepatocytes and primary amine groups as a functional domain for DNA binding. Biological activity of these galactosyl compounds in DNA delivery was evaluated in HepG2 and BL-6 cells and compared with respect to the number of galactose residues as well as primary amine groups in each molecule. Transfection experiments using a firefly luciferase gene as a reporter revealed that compounds with multivalent binding properties were more active in DNA delivery. An optimal transfection activity in HepG2 cells requires seven primary amine groups and a minimum of two galactose residues in each molecule. The transfection activity of compounds carrying multi-galactose residues can be inhibited by asialofetuin, a natural substrate for asialoglycoprotein receptors of hepatocytes, suggesting that gene transfer by these galactosyl compounds is asialoglycoprotein receptor-mediated. These results provide direct evidence in support of our new strategy for the use of small and synthetic compounds for cell specific and targeted gene delivery.  相似文献   

10.
The effect of metabolic activation on the mutagenic potential of some phenanthridinium compounds was examined in Salmonella typhimurium strains TA1538 and TA1978 . All of the compounds tested were mutagenic in TA1538, a DNA excision-repair-deficient strain, when metabolizing enzymes were included in the assay. Reversions were not detected when these compounds were examined under the same conditions in TA1978 , the isogenic strain of TA1538 proficient in DNA repair. The mutagenic activity of an azido analog of propidium iodide was also examined using photoactivation and enzymatic activation, and with both conditions, reversions were observed in TA1538 but not in TA1978 . Furthermore, the ranking of mutagenic activity of propidium azide relative to ethidium azide analogs was comparable for both types of activation. The evidence from several studies suggests that the structural requirements for mutagenic activity for this series of phenanthridinium compounds appear to be the same whether mutagenesis is induced via photoactivation or metabolic activation. The interaction with DNA resulting in covalent alteration of the DNA is implicated as the mutagenic mechanism whether the active species is generated by metabolic- or photo-activation.  相似文献   

11.
The antitumor activity of cis-platin is believed to result from its interaction with cellular DNA and subsequent processing of DNA adducts by damage recognition proteins. Among them are the high mobility group (HMG) proteins 1 and 2, which have been hypothesized to mediate the effect of cis-platin. One possibility suggests that the tight binding of HMG1 to DNA adducts blocks the repair of damaged DNA. In order to further evaluate such a mechanism, several cis-platinum complexes with known antitumor activity have been used to treat DNA and the affinity of HMG1 to the DNA adduct induced by each drug was determined. The dissociation constants for the complexes of HMG1 with the platinated probe were obtained by gel mobility shift assays. The antitumor activity of the tested platinum compounds was found to correlate with the binding affinity of HMG1 to the respective drug-DNA adduct. These findings support the view that HMG1 contributes to cytotoxicity of cis-platin by shielding damaged DNA from repair. In addition, they offer a fast test for screening new platinum compounds for antitumor activity.  相似文献   

12.
Six galloyl-substituted procyanidin B1 and B2, 3-O-gallate, 3'-O-gallate, and 3,3'-di-O-gallate, were systematically synthesized with the condensation method using TMSOTf as a catalyst. Their ability of DPPH radical scavenging activity and DNA polymerase inhibitory activity were also investigated. The results indicated that the galloyl group of these compounds is very important for both activities. 3,3'-Di-O-gallate dimers acted as strong inhibitor against DNA polymerase alpha and beta, whereas the desgalloyl and monogalloyl compounds did not exhibit any appreciable inhibitory activity against the DNA polymerase beta.  相似文献   

13.
Non-covalent drug/DNA interactions are difficult to study and because of this, the significance of such interactions from a safety standpoint and their contribution to positive genetic toxicology test findings is poorly understood. It is shown in the present study that such interactions may be detected and quantified in Chinese hamster V79 cells by an adaptation of the bleomycin amplification assay. This assay measures the ability of a test compound to enhance the DNA damaging activity of the antibiotic bleomycin using micronucleus formation as an endpoint. Results are presented examining the bleomycin amplification activity of known intercalating agents, groove-binding agents and other structurally diverse classes of compounds for which intercalative status has not been reported. The assay reveals a strong and predictable SAR for amplification activity based on number and orientation of aromatic rings. Moreover, excellent correlations are observed between DNA binding (viscometric analyses) and DNA amplification in V79 cells for a series of seven experimental compounds. The assay is shown to be useful in understanding the genotoxicity of marketed antihistamines and to help explain genetic toxicology findings observed in a series of novel pharmaceutical entities. It is proposed that assessment of bleomycin amplification activity of novel compounds in early genotoxicity prescreening may provide important information upon which to base synthesis of compounds with minimal or no genotoxic liability.  相似文献   

14.
The well-reported, but moderate antitumor activity of the acronycine alkaloid led us to synthesize a novel series of thioacridone compounds related to acronycine, as potential anticancer agents. Compounds were designed either as DNA intercalating agents, or as DNA intercalating agents with covalent bond forming potential. Bathochromic shifts of the compounds upon complexation with salmon testis DNA suggested intercalation as the mode of DNA binding. The binding interaction of the compounds was found to be approximately 10(2) M(-1), with that of the most potent compound 1-(2-dimethylaminoethylamino)-9(10H)-thioacridone, 10(4) M(-1). In vitro cytotoxic activity (IC50) against HL-60 cells was found to range between 3.5 and 22 microg/mL. QSAR analyses yielded a multiple linear regression equation with an r2 of 0.847 for DNA binding and an r2 of 0.575 for cytotoxicity. The physicochemical parameters used in the QSAR analyses were logP, polar surface area, and calculated molar refractivity. Docking studies were also performed to compare the binding of the most potent and least potent compounds in the study in order to predict desirable chemical characteristics for further exploitation in drug design efforts. The thioacridone compounds in this series demonstrate cytotoxic activity in vitro that merit future in vivo evaluation.  相似文献   

15.
The antioxidant capability of a series of isoflavonoid and lignan compounds in both cellular and cell-free systems has been investigated, and related to structure. Nordihydroguaiaretic acid exhibited a potent antioxidant activity in both HepG2 and MDA-MB-468 cells (IC50 5.3 and 1.1 μM respectively), as determined by inhibition of 2',7'-dichlorofluorescin oxidation via t-BOOH, although no inhibition was observed with other compounds tested in this system. All compounds inhibited the formation of 8-oxodeoxyguanosine in DNA exposed to hydroxyl radicals via gamma irradiation or the Fenton reaction. Whilst almost complete inhibition of gamma irradiation-induced damage was achieved (IC50 ranged from 0.2 to 0.8 μM), inhibition was less pronounced with the Fenton system. The ability of all compounds to interact with DNA (as well as with reactive oxygen and iron) was also demonstrated by scanning UV spectroscopy, suggesting that the compounds may inhibit DNA oxidation at least in part by binding to DNA. Hydroxyl radical-scavening, iron-chelating and DNA-binding activity of these compounds supports their proposed role as natural cancer-protective agents.  相似文献   

16.
A review has been compiled illustrating the directions taken in examining the genotoxic effects of metals and their compounds centering only on those studies pertaining to effects of metals and their compounds on DNA structure and function, such as the induction of DNA strand breaks, production of DNA-protein crosslinks, induction of chromosomal aberrations, and sister chromatid exchanges. Although it is premature to declare a cause and effect relationship between the carcinogenic activity of metals and their ability to induce one or more lesions in DNA, strong evidence is emerging to suggest such a relationship. Low concentrations of metals induce the appearance of DNA lesions, such as strand breaks and crosslinks, or induce sister chromatid exchanges or DNA repair synthesis. Assays based upon these events constitute extremely sensitive probes for genotoxic effects of metals and their compounds. These effects of metals on DNA are consistent with the currently accepted mechanism of chemical carcinogenesis, allowing the acquisition and propagation of altered DNA function. The lack of complete information on the activity of metals in producing DNA lesions allow only preliminary conclusions to be drawn. Certain compounds containing potentially or actually carcinogenic elements, such as Ni, Be, As, Cr, Cd, and to a minor extent Pb, have yielded positive responses in one or more DNA lesion assays. At relatively nontoxic levels of Ni and Cr, considerable evidence suggests that multiple types of DNA lesions are induced.  相似文献   

17.
A total of 18 compounds consisting of 7 aliphatic and 7 aromatic bis(guanylhydrazones), p-quinone-bis(guanylhydrazone), one monoguanylhydrazone, one diamidine and one diguanidine were studied spectrophotometrically to determine their ability to interact with native calf-thymus DNA and the possible correlation of binding with biological activity. In each case, the ability of a compound to bind to DNA correlated with its ability to inhibit the activity of DNA-dependent DNA polymerase (EC 2.7.7.7) extracted from mouse leukemia L1210 cells. For example, all the aromatic bis-guanylhydrazones and diamidine (hydroxystilbamidine), which were good inhibitors of the enzyme activity, showed a biphasic interaction with DNA. All the aliphatic compounds displayed no detectable interaction with DNA in the Tris buffer used, and were also poor inhibitors of the polymerase activity. Interaction of decamethylene diguanide (Synthalin) with DNA could not be determined because the compound does not absorb light in the UV-VIS region. However, in similarity with other aliphatic compounds, this agent was a poor inhibitor of DNA polymerase reaction. The p-quinone-bis(guanylhydrazone) and p-phenylbenzaldehyde-monoguanylhydrazone showed only a monophasic interaction with DNA and caused an intermediate inhibition of the enzyme activity. When tested for possible anti-leukemic activity against i.p. L1210 leukemia in syngeneic DBA/2J mice, all the aromatic bisguanylhydrazones as well as hydroxystilbamidine caused prolongation of survival of tumor-bearing mice. Among the aliphatic bisguanylhydrazones, all of which showed no binding to DNA and caused at the most only a very slight inhibition of DNA polymerase, only methylglyoxal-bis(guanylhydrazone) (CH3-G) had antileukemic activity. Synthalin also inhibited leukemic growth. Evidences presented indicate that the mechanisms of action of aliphatic and aromatic bisguanylhydrazones may be quite different. Furthermore, the ability to bind to DNA may be a useful criterion to predict the antileukemic activity of aromatic guanylhydrazones and possibly other aromatic bis-cationic compounds, but not that of aliphatic congeners.  相似文献   

18.
The synthesis of 1,3-bis-[3,4,5,6-tetrahydroxyazepane-N-p-phenoxy] and 1,3-bis-[3,4,5,6-tetrahydroxyazepane-N-p-benzyloxy] propanes is reported. These compounds have been prepared to investigate the potential of incorporating iminosugars as useful recognition elements in DNA minor groove binding agents. The compounds were shown to have very moderate binding affinities for DNA in thermal denaturation and ethidium bromide displacement assays when compared with propamidine. They were also found to possess some in vitro anticancer activity that did not correlate with their DNA binding affinity.  相似文献   

19.
The synthesis of alcyopterosin A and a series of new derivatives possessing an illudalane skeleton is described. The DNA binding properties of these compounds have been examined and compared to those of reference drugs using a UV spectroscopy technique. The antitumor activity of selected compounds against a panel of 60 human tumor cell lines was tested in the in vitro anticancer screening of the National Cancer Institute. Redox properties were also evaluated. Tested compounds showed significant DNA affinity, derivatives 6 and 15 exhibited remarkable antiproliferative activity and have been identified as new leads in the antitumor strategies.  相似文献   

20.
2',3'-Dideoxy-3'-aminonucleoside 5'-triphosphates are shown to be strong inhibitors of repair DNA synthesis in gamma-irradiated rat liver chromatin. The activity of these compounds is comparable with that of the most effective inhibitor of the DNA polymerase beta-catalyzed repair DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号