首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel series of antimicrobials of the oxazolidinone class is disclosed. These compounds are characterized relative to previously described analogues by a 'halostilbene-derived' pharmacophore and demonstrate enhanced antimicrobial activity against key Gram-positive pathogens when compared to Linezolid.  相似文献   

2.
Novel oxazolidinone-quinolone hybrid antimicrobials   总被引:3,自引:0,他引:3  
Antimicrobial compounds incorporating oxazolidinone and quinolone pharmacophore substructures have been synthesized and evaluated. Representative analogues 2, 5, and 6 display an improved potency versus linezolid against gram-positive and fastidious gram-negative pathogens. The compounds are also active against linezolid- and ciprofloxacin-resistant Staphylococcus aureus and Enterococcus faecium strains. The MOA for these new antimicrobials is consistent with a combination of protein synthesis and gyrase A/topoisomerase IV inhibition, with a structure-dependent degree of the contribution from each inhibitory mechanism.  相似文献   

3.
Synthesis and antibacterial activity of 5-substituted oxazolidinones   总被引:2,自引:0,他引:2  
A series of 5-substituted oxazolidinones with varying substitution at the 5-position of the oxazolidinone ring were synthesized and their in vitro antibacterial activity was evaluated. The compounds demonstrated potent to weak antibacterial activity. A novel compound (PH-027) demonstrated potent antibacterial activity, which is comparable to or better than those of linezolid and vancomycin against antibiotic-susceptible standard and clinically isolated resistant strains of gram-positive bacteria. Although the presence of the C-5-acetamidomethyl functionality at the C-5 position of the oxazolidinones has been widely claimed and reported as a structural requirement for optimal antimicrobial activity in the oxazolidinone class of compounds, our results from this work identified the C-5 triazole substitution as a new structural alternative for potent antibacterial activity in the oxazolidinone class.  相似文献   

4.
A series of potential antimicrobial derivatives possessing bioisosteric replacements for the central oxazolidinone ring found in oxazolidinone antibacterials have been prepared. The design concept involved replacement of the requisite sp(3)-hybridized stereogenic center found at the 5-position of the oxazolidinone with a nitrogen atom. The synthesis and antibacterial activity of three such ring systems, the benzisoxazolinones, pyrroles, and isoxazolinones is described.  相似文献   

5.
A series of fatty acid ester and ether derivatives have been chemically synthesised based on carbohydrate and non-carbohydrate polyhydroxylated scaffolds. The synthesised compounds, along with their corresponding fatty acid monoglyceride antimicrobials, were evaluated for antimicrobial activity against Staphylococcus aureus and Escherichia coli. Of the derivatives synthesised, several of the carbohydrate-based compounds have antimicrobial efficacy comparable with commercially available antimicrobials. The results suggest that the nature of the carbohydrate core plays a role in the efficacy of carbohydrate fatty acid derivatives as antimicrobials.  相似文献   

6.
The oxazolidinones are a new and potent class of antimicrobial agents with activity mainly against Gram-positive strains. The commercial success of linezolid, the only FDA-approved oxazolidinone, has prompted many pharmaceutical companies to devote resources to this area of investigation. Until now, four types of chemical modifications of linezolid and oxazolidinone-type antibacterial agents, including modification on each of the A-(oxazolidinone), B-(phenyl), and C-(morpholine) rings as well as the C-5 side chain of the A-ring substructure, have been described. Division into sections according to side chain modification or the type of ring will be used throughout this review, although the process of synthesis usually involves the simultaneous modification of several elements of the linezolid substructure; therefore, assignment into the appropriate section depends on the structure–activity relationships (SAR) studies.This review makes an attempt to summarise the work carried out in the period from 2006 until mid-2012.  相似文献   

7.
首个唑烷酮类抗菌药利奈唑胺自2000 年上市以来,其耐药性问题日趋严重,开发新型唑烷酮类抗菌药物成为研究热点之一。综述了近年来对利奈唑胺C 环进行的结构改造及相关衍生物的研究进展,旨在为唑烷酮类抗菌药的深入研发提供参考。  相似文献   

8.
Resistance to antimicrobials is one of the biggest threats to our healthcare. However, in the last few decades very few truly novel antimicrobial compounds have been brought to market, creating the potential threat of a post-antibiotic era in which infections are very difficult to treat. Identification of novel compounds with antimicrobial activity is therefore paramount. Ideally, novel compounds should be designed that are active against targets that are not or barely used, as it is less likely that resistance already exists against such compounds. One example of an underexplored target in the treatment of infections is DNA. In this review we describe a number of DNA binding compounds and discuss potential opportunities and problems.  相似文献   

9.
Novel oxazolidinone antibacterials containing N-hydroxyacetamidine moiety are synthesized with the diversity at C-5 terminus. These compounds have been evaluated against a panel of clinically relevant gram-positive and gram-negative pathogens. Most of the analogs in this series displayed activity superior to Linezolid and in vivo efficacies of selected oxazolidinones are also disclosed herein.  相似文献   

10.
Human infectious diseases caused by various microbial pathogens, in general, impact a large population of individuals every year. These microbial diseases that spread quickly remain to be a big issue in various health-related domains and to withstand the negative drug impacts, the antimicrobial-resistant pathogenic microbial organisms (pathogenic bacteria and pathogenic fungi) have developed a variety of resistance processes against many antimicrobial drug classes. During the COVID-19 outbreak, there seems to be an upsurge in drug and multidrug resistant-associated pathogenic microbial species. The preponderance of existing antimicrobials isn’t completely effective, which limits their application in clinical settings. Several naturally occurring chemicals produced from bacteria, plants, animals, marine species, and other sources are now being studied for antimicrobial characteristics. These natural antimicrobial compounds extracted from different sources have been demonstrated to be effective against a variety of diseases, although plants remain the most abundant source. These compounds have shown promise in reducing the microbial diseases linked to the development of drug tolerance and resistance. This paper offers a detailed review of some of the most vital and promising natural compounds and their derivatives against various human infectious microbial organisms. The inhibitory action of different natural antimicrobial compounds, and their possible mechanism of antimicrobial action against a range of pathogenic fungal and bacterial organisms, is provided. The review will be useful in refining current antimicrobial (antifungal and antibacterial) medicines as well as establishing new treatment strategies to tackle the rising number of human bacterial and fungal-associated infections.  相似文献   

11.
Replacement of the morpholine C-ring of linezolid 1 with a 1,3,4-thiadiazolyl ring leads to oxazolidinone analogues 5 having potent antibacterial activity against both gram-positive and gram-negative organisms. Conversion of the C5 acetamide group to a thioacetamide further increases the potency of these compounds.  相似文献   

12.
In an era of increasing resistance to classical antibacterial agents, the synthetic oxazolidinone series of antibiotics has attracted much interest. Zyvoxtrade mark was the first oxazolidinone to be approved for clinical use against infections caused by multi-drug resistant Gram-positive bacteria. In the course of studies directed toward the discovery of novel antibacterial agents, a new series of synthetic phenyl-isoxazolinone agents that displayed potent activity against Gram-positive bacterial strains was recently discovered at Bristol-Myers Squibb. Extensive investigation of various substitutions on the phenyl ring was then undertaken. We report here, the synthesis and antibacterial activity of a series of biaryl isoxazolinone compounds.  相似文献   

13.
Thirty-six sesquiterpene lactones and related compounds were evaluated for antimicrobial activity against six strains of bacteria. The results obtained show that the beta unsubstituted cyclopentenone ring moiety contributes to moderate antimicrobial activity against Gram positive bacteria. The corresponding saturated compounds gave a more than ten-fold decrease in activity. The significant antimicrobial activity appears to be independent of the presence or absence of an α-methylene-γ-lactone moiety. A more than ten-fold diminution in antimicrobial activity was also observed when the beta position of the cyclopentenone ring was substituted. A similar result was found when the beta unsubstituted enone system was present in a six-membered ring. Enhanced activity was obtained by esterification of the hydroxyl group of helenalin as well as epoxidation of mexicanin-A.  相似文献   

14.
Novel oxazolidinone derivatives of the lead compound RBx 8700, containing methylene oxygen- and methylene sulfur-linked substituents at the C5-position, were synthesized. Antibacterial screening of these compounds against a panel of resistant and susceptible Gram-positive and fastidious Gram-negative bacteria gave compounds 2 and 4 as new antibacterial agents.  相似文献   

15.
Luo  Lu  Yang  Jun  Wang  Cheng  Wu  Jie  Li  Yafang  Zhang  Xu  Li  Hui  Zhang  Hui  Zhou  Yumei  Lu  Aiping  Chen  Shilin 《中国科学:生命科学英文版》2022,65(6):1123-1145

As coronavirus disease 2019 (COVID-19) threatens human health globally, infectious disorders have become one of the most challenging problem for the medical community. Natural products (NP) have been a prolific source of antimicrobial agents with widely divergent structures and a range vast biological activities. A dataset comprising 618 articles, including 646 NP-based compounds from 672 species of natural sources with biological activities against 21 infectious pathogens from five categories, was assembled through manual selection of published articles. These data were used to identify 268 NP-based compounds classified into ten groups, which were used for network pharmacology analysis to capture the most promising lead-compounds such as agelasine D, dicumarol, dihydroartemisinin and pyridomycin. The distribution of maximum Tanimoto scores indicated that compounds which inhibited parasites exhibited low diversity, whereas the chemistries inhibiting bacteria, fungi, and viruses showed more structural diversity. A total of 331 species of medicinal plants with compounds exhibiting antimicrobial activities were selected to classify the family sources. The family Asteraceae possesses various compounds against C. neoformans, the family Anacardiaceae has compounds against Salmonella typhi, the family Cucurbitacea against the human immunodeficiency virus (HIV), and the family Ancistrocladaceae against Plasmodium. This review summarizes currently available data on NP-based antimicrobials against refractory infections to provide information for further discovery of drugs and synthetic strategies for anti-infectious agents.

  相似文献   

16.
Antimicrobial properties of allium species   总被引:1,自引:0,他引:1  
The antimicrobial activity of Allium species has long been recognized, with allicin, other thiosulfinates, and their transformation products having antimicrobial activity. Alliums are inhibitory against all tested microorganisms such as bacteria, fungi, viruses, and parasites. Alliums inhibit multi-drug-resistant microorganisms and often work synergistically with common antimicrobials. Allium-derived antimicrobial compounds inhibit microorganisms by reacting with the sulfhydryl (SH) groups of cellular proteins. It used to be thought that allicin reacts only with cysteine and not with non-SH amino acids, but evidence has accumulated that allicin and other thiosulfinates also react with non-SH amino acids.  相似文献   

17.
Among 31 3,4-dihydro-s-triazinobenzimidazole derivatives tested 12 compounds showedin vitro antimicrobial activity against G+ bacteria. Best results were obtained with substances containing naphthyl or halogenated phenyl group on the triazine ring. The tested derivatives had no significantin vitro antimicrobial activity against either the used G species or fungi.  相似文献   

18.
Exploration of antimicrobial potential in LAB by genomics   总被引:8,自引:0,他引:8  
A tremendous flow of information has been created through various genome sequencing projects worldwide. So far, 128 bacterial genome sequences have been completed and 391 are under way. Many of these bacteria, including several lactic acid bacteria (LAB), are used in the production and preservation of food and feed. The major antimicrobial and biopreservative substance produced by LAB is organic acid; however, some LAB produce additional antimicrobial compounds. Among these, the bacteriocins have demonstrated great potential as food preservatives. Additionally, antimicrobial compounds different from the bacteriocins have recently been identified, of which several display strong antifungal activity. The information obtained from genomics and related technologies will have great impact on the future identification and development of new antimicrobial agents. Developments will include the identification of pathways for the production of antimicrobials and genome mining for new antimicrobial peptides.  相似文献   

19.
Active food packaging systems promote better food quality and/or stability, such as by releasing antimicrobial agents into food. Advantages of adding antimicrobials to the packaging material instead of into the bulk food include controlled diffusion, reduced antimicrobial contents, and improved cost effectiveness. Nanostructured antimicrobials are especially effective due to their high specific surface area. The present review is focused on recent advances and findings on the main nanostructured antimicrobial packaging systems for food packaging purposes. Several kinds of nanostructures, including both inorganic particles and organic structures, have been proven effective antimicrobials by different mechanisms of action and with different application scopes. Moreover, there are systems containing nanocarriers to protect antimicrobials and deliver them in a controlled fashion. On the other hand, scientific data about migration of nanostructures onto food and their toxicity are still limited, requiring special attention from researchers and regulation sectors.  相似文献   

20.
A series of oxazolidinone derivatives, which morpholino group of linezolid was replaced with heteroaromatic ring substituted pyridine moiety, were newly synthesized, and their substituted effects on in vitro and in vivo antibacterial activities were evaluated against four problematic gram-positive strains including drug resistant strains and two gram-negative strains. Most compounds exhibited the enhanced in vitro activities with 4-16-fold and three compounds exerted more than 2-fold increased in vivo efficacies than linezolid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号