首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine 15 bile acid metabolic products in human serum by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and value their diagnostic outcome in primary biliary cholangitis (PBC). Serum from 20 healthy controls and 26 patients with PBC were collected and went LC/MS/MS analysis of 15 bile acid metabolic products. The test results were analyzed by bile acid metabolomics, and the potential biomarkers were screened and their diagnostic performance was judged by statistical methods such as principal component and partial least squares discriminant analysis and area under curve (AUC). 8 differential metabolites can be screened out: Deoxycholic acid (DCA), Glycine deoxycholic acid (GDCA), Lithocholic acid (LCA), Glycine ursodeoxycholic acid (GUDCA), Taurolithocholic acid (TLCA), Tauroursodeoxycholic acid (TUDCA), Taurodeoxycholic acid (TDCA), Glycine chenodeoxycholic acid (GCDCA). The performance of the biomarkers was evaluated by the AUC, specificity and sensitivity. In conclusion, DCA, GDCA, LCA, GUDCA, TLCA, TUDCA, TDCA and GCDCA were identified as eight potential biomarkers to distinguish between healthy people and PBC patients by multivariate statistical analysis, which provided reliable experimental basis for clinical practice.  相似文献   

2.
We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA), using selected reaction monitoring (SRM) analysis. The method was applied to analyze bile acid 3-sulfates in human urine from healthy volunteers. The results indicated an unknown compound with the nonamidated common bile acid 3-sulfates on the chromatogram obtained by the selected reaction monitoring analysis. By comparison of the retention behavior and MS/MS spectrum of the unknown peak with the authentic specimen, the unknown compound was identified as 3beta,12alpha-dihydroxy-5beta-cholanoic acid 3-sulfate.  相似文献   

3.
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous double-conjugates of 3beta-hydroxy-7-oxo-5-cholen-24-oic acid were also prepared. The principal reactions involved were: (1) beta-d-N-acetylglucosaminidation at C-7 of methyl 3beta-tert-butyldimethylsilyloxy (TBDMSi)-7beta-hydroxy-5-cholen-24-oate with 2-acetamido-1alpha-chloro-1,2-dideoxy-3,4,6-tri-O-acetyl-d-glucopyranose in the presence of CdCO(3) in boiling toluene; (2) sulfation at C-3 of the resulting 3beta-TBDMSi-7beta-GlcNAc with sulfur trioxide-trimethylamine complex in pyridine; and (3) direct amidation at C-24 of the 3beta-sulfooxy-7beta-GlcNAc conjugate with glycine methyl ester hydrochloride (or taurine) using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as a coupling agent in DMF. The structures of the multi-conjugated bile acids were characterized by liquid chromatography-mass spectrometry with an electrospray ionization probe under the positive and negative ionization modes.  相似文献   

4.
We report a sensitive and robust method to determine cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and their taurine- and glycine-conjugate concentrations in human plasma using liquid chromatography–tandem mass spectrometry. Activated charcoal was utilized to prepare bile acid-free plasma, which served as the biological matrix for the preparation of standard and quality control samples. Plasma sample preparation involved solid-phase extraction. A total of 16 bile acids and 5 internal standards were separated on a reverse column by gradient elution and detected by tandem mass spectrometry in negative ion mode. The calibration curve was linear for all the bile acids over a range of 0.005–5 μmol/L. The extraction recoveries for all the analytes fell in the range of 88–101%. Intra-day and inter-day coefficients of variation were all below 10%. A stability test showed that all the bile acids were stable in plasma for at least 6 h at room temperature, at least three freeze–thaw cycles, in the −70 °C or −20 °C freezer for 2 months, and also in the reconstitution solution at 8 °C for 48 h. Comparison of the matrix effect of bile acid-free plasma with that of real plasma indicated that the charcoal purification procedure did not affect the properties of charcoal-purified plasma as calibration matrix. This method has been used to determine the bile acid concentrations in more than 300 plasma samples from healthy individuals. In conclusion, this method is suitable for the simultaneous quantification of individual bile acids in human plasma.  相似文献   

5.
Acyl-adenylates and acyl-CoA thioesters of bile acids (BAs) are reactive acyl-linked metabolites that have been shown to undergo transacylation-type reactions with the thiol group of glutathione (GSH), leading to the formation of thioester-linked GSH conjugates. In the current study, we examined the transformation of cholyl-adenylate (CA-AMP) and cholyl-coenzyme A thioester (CA-CoA) into a cholyl-S-acyl GSH (CA-GSH) conjugate by rat hepatic glutathione S-transferase (GST). The reaction product was analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS). The GST-catalyzed formation of CA-GSH occurred with both CA-AMP and CA-CoA. Ursodeoxycholic acid, lithocholic acid, and 2,2,4,4-2H4-labeled lithocholic acid were administered orally to biliary fistula rats, and their corresponding GSH conjugates were identified in bile by LC/ESI-MS2. These in vitro and in vivo studies confirm a new mode of BA conjugation in which BAs are transformed into their GSH conjugates via their acyl-linked intermediary metabolites by the catalytic action of GST in the liver, and the GSH conjugates are then excreted into the bile.  相似文献   

6.
An improved ultra performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method was established for the simultaneous analysis of various bile acids (BA) and applied to investigate liver BA content in C57BL/6 mice fed 1% cholic acid (CA), 0.3% deoxycholic acid (DCA), 0.3% chenodeoxycholic acid (CDCA), 0.3% lithocholic acid (LCA), 3% ursodeoxycholic acid (UDCA), or 2% cholestyramine (resin). Results indicate that mice have a remarkable ability to maintain liver BA concentrations. The BA profiles in mouse livers were similar between CA and DCA feedings, as well as between CDCA and LCA feedings. The mRNA expression of Cytochrome P450 7a1 (Cyp7a1) was suppressed by all BA feedings, whereas Cyp7b1 was suppressed only by CA and UDCA feedings. Gender differences in liver BA composition were observed after feeding CA, DCA, CDCA, and LCA, but they were not prominent after feeding UDCA. Sulfation of CA and CDCA was found at the 7-OH position, and it was increased by feeding CA or CDCA more in male than female mice. In contrast, sulfation of LCA and taurolithocholic acid (TLCA) was female-predominant, and it was increased by feeding UDCA and LCA. In summary, the present systematic study on BA metabolism in mice will aid in interpreting BA-mediated gene regulation and hepatotoxicity.  相似文献   

7.
High-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) are generally accepted as the preferred techniques for detecting and quantitating analytes of interest in biological matrices on the basis of the rule that one chemical compound yields one LC-peak with reliable retention time (Rt.). However, in the current study, we have found that under the same LC-MS conditions, the Rt. and shape of LC-peaks of bile acids in urine samples from animals fed dissimilar diets differed significantly among each other. To verify this matrix effect, 17 authentic bile acid standards were dissolved in pure methanol or in methanol containing extracts of urine from pigs consuming either breast milk or infant formula and analyzed by LC-MS/MS. The matrix components in urine from piglets fed formula significantly reduced the LC-peak Rt. and areas of bile acids. This is the first characterization of this matrix effect on Rt. in the literature. Moreover, the matrix effect resulted in an unexpected LC behavior: one single compound yielded two LC-peaks, which broke the rule of one LC-peak for one compound. The three bile acid standards which exhibited this unconventional LC behavior were chenodeoxycholic acid, deoxycholic acid, and glycocholic acid. One possible explanation for this effect is that some matrix components may have loosely bonded to analytes, which changed the time analytes were retained on a chromatography column and interfered with the ionization of analytes in the MS ion source to alter the peak area. This study indicates that a comprehensive understanding of matrix effects is needed towards improving the use of HPLC and LC-MS/MS techniques for qualitative and quantitative analyses of analytes in pharmacokinetics, proteomics/metabolomics, drug development, and sports drug testing, especially when LC-MS/MS data are analyzed by automation software where identification of an analyte is based on its exact molecular weight and Rt.  相似文献   

8.
In the studies of lipid metabolomics, liquid chromatography electrospray ionization mass spectrometry (LC/MS) is a robust and popular technique. Although effective reverse-phase LC methods enabling the separation of phospholipid molecular species have been developed, there are still problems with the separation of phosphatidic acid (PA) and phosphatidylserine (PS). These acidic phospholipids often elute as extensively broad peaks, causing inferior separation, detection, and quantification-a severe limitation of the method. In this study, we have developed reverse-phase LC conditions that reduce the undesired peak tailings in the elution profiles of both PA and PS, by using a starting mobile phase containing a low concentration of phosphoric acid (5 microM) and a high percentage of water (40%). Our method sensitively analyzes PA, PS, and their lysoforms, as well as the other phospholipids within a biological sample, in a single chromatographic step by an LC/MS method and, thus, is suitable for lipidomics.  相似文献   

9.
Bile acids are biosynthesized from cholesterol in hepatocytes and usually localize in the enterohepatic circulation system. This system is regulated by several transporters that are expressed in the liver and intestine. Organic solute transporter (OST) α/β, which is known as a bidirectional transporter for some organic anions, contributes to the transport of bile acids; however, the transport properties of individual bile acids are not well understood. In this study, we investigated the transport properties of five bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA], ursodeoxycholic acid [UDCA], and lithocholic acid [LCA]) together with their glycine and taurine conjugates mediated by OSTα/β. Of the unconjugated bile acids, CA, CDCA, DCA, and LCA were taken up by OSTαβ/MDCKII cells more rapidly than mock cells, but no significant increase in the uptake of UDCA was observed. On the contrary, all glycine- and taurine-conjugated bile acids showed a significant increase in the uptake by OSTαβ/MDCKII cells. Saturable OSTα/β-mediated transports of CDCA, DCA, glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA) were observed. The apparent Michaelis constants of CDCA, DCA, GCDCA, GDCA, GLCA, TCDCA, and TLCA for OSTα/β were 23.0 ± 4.0, 14.9 ± 1.9, 864.2 ± 80.7, 586.4 ± 43.2, 12.8 ± 0.5, 723.7 ± 4.8, and 23.9 ± 0.3 μM, respectively. However, the transport of other bile acids was not saturable. Our results indicate that OSTα/β has a low affinity but a high capacity for transporting bile acids.  相似文献   

10.
11.
An unknown bile acid was found by gas-liquid chromatography in the serum of patients who were administered ursodeoxycholic acid for the treatment of cholesterol gallstones. Identification of the chemical structure of the unknown bile acid was performed by the use of gas-liquid chromatography-mass spectrometry. Mass spectrum analysis of the methyl ester trimethylsilyl ether of the bile acid showed explicitly that this is dihydroxy-5 beta-cholanoic acid, since peaks at m/e 460 and 370 characteristic of methyl ester trimethylsilyl ether of dihydroxy bile acid were clearly exhibited. Sites of the two hydroxyl groups on the steroid nucleus were determined to be at the 3- and 7-positions by conversion of the bile acid to the corresponding dioxo-cholanoic acid and by comparison of the gas-liquid chromatographic behavior with those of authentic dioxo bile acids. Four authentic 3,7-dihydroxy-5 beta-cholan-24-oic acids were chemically synthesized and retention times and mass spectra of their methyl ester trimethylsilyl ether derivatives compared precisely with that of the unknown bile acid. The results indicate that the unknown bile acid is 3 beta, 7 beta-dihydroxy-5 beta-cholan-24-oic acid. Preliminary experiments suggest that 3 beta, 7 beta-dihydroxy-5 beta-cholan-24-oic acid is absent as amino acid-conjugated forms in serum. It is also suggested that the bile acid is excreted into urine but not into bile.  相似文献   

12.
A sequence of chromatographic methods (thin-layer chromatography, high-performance liquid chromatography and glass capillary gas chromatography) was used to separate the acid fraction of human urine. The power of this method to separate and detect previously unknown compounds and the elucidation of their final structure with mass spectrometry is exemplified by the identification of N-acetyl-2-aminooctanoic acid as a metabolic compound in the urine of healthy individuals.In addition, the conjugate of glycine with indolepropionic acid, N-formylanthranilic acid, succinoylphenylalanine, δ-hydroxyvaleric acid, δ-hydroxycapric acid, 3-hydroxyadipic acid, and higher homologues were detected in a polar fraction of human urine.  相似文献   

13.
Pigment extracts from Emiliania huxleyi (Lohm.) Hay et Mohler (strains CCMP 370, CCMP 373, and NIOZ CH 24) were analyzed using high-performance liquid chromatography (HPLC) on highly efficient monomeric and polymeric octadecylsilica columns using either ammonium acetate or pyridine containing mobile phases. Both systems showed chromatographic profiles with peaks corresponding to pigments of uncertain structure: those of the polar and nonpolar chlorophyll c forms and one peak whose on-line diode array spectrum resembled that of the fucoxanthin acyloxy derivatives. Liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry gave a molecular mass of 786 units for the unknown carotenoid. The pigments corresponding to each of these fractions were isolated and their visible spectra recorded in various solvents. Samples of the isolated pigments were subjected to analysis by fast atom bombardment mass spectrometry that confirmed a molecular mass of 786 for the unknown carotenoid and gave a mass of 654 units for the polar chlorophyll c 3, compatible with the monovinylic structure previously suggested. The detection of these new pigments calls for attention on the use of correct methodologies when HPLC pigment signatures are used to study the taxonomic composition of natural phytoplankton populations.  相似文献   

14.
The newly established hyphenated instrumentation of LC/DAD/SPE/NMR and LC/UV/(ESI)MS techniques have been applied for separation and structure verification of the major known constituents present in Greek Hypericum perforatum extracts. The chromatographic separation was performed on a C18 column. Acetonitrile-water was used as a mobile phase. For the on-line NMR detection, the analytes eluted from column were trapped one by one onto separate SPE cartridges, and hereafter transported into the NMR flow-cell. LC/DAD/SPE/NMR and LC/UV/MS allowed the characterization of constituents of Greek H. perforatum, mainly naphtodianthrones (hypericin, pseudohypericin, protohypericin, protopseudohypericin), phloroglucinols (hyperforin, adhyperforin), flavonoids (quercetin, quercitrin, isoquercitrin, hyperoside, astilbin, miquelianin, I3,II8-biapigenin) and phenolic acids (chlorogenic acid, 3-O-coumaroylquinic acid). Two phloroglucinols (hyperfirin and adhyperfirin) were detected for the first time, which have been previously reported to be precursors in the biosynthesis of hyperforin and adhyperforin.  相似文献   

15.
In this study, we compared in vitro calcium binding by the taurine and glycine conjugates of the major bile acids in human bile: cholic (CA), chenodeoxycholic (CDCA) and deoxycholic (DCA) acids, together with the cholelitholytic bile acids ursodeoxycholic (UDCA) and ursocholic (UCA) acids. At physiological total calcium (CaTOT) (1-15 mM) and bile acid (BA) (10-50 mM) concentrations, all the bile acids caused concentration-dependent falls in [Ca2+], suggesting calcium binding. Except for glycine-conjugated CDCA, all the other calcium-bile acid complexes were soluble in 150 mM NaCl. The calcium binding affinities followed the pattern: dihydroxy (CDCA, UDCA and DCA) greater than trihydroxy (CA and UCA) bile acids, and glycine conjugates greater than taurine conjugates. The glycine conjugate of UDCA, which increases during UDCA treatment, had the highest calcium binding affinity. Ten-20 mM phospholipid modestly increased calcium binding by CA conjugates, but not by CDCA, UDCA, and DCA conjugates. Phospholipid also prevented the precipitation of glyco-CDCA in the presence of calcium. Bile acid-calcium biding was pH-independent over the range 6.5-8.5. The different calcium binding affinities of the major biliary bile acids may partly explain their varying effects on biliary calcium secretion. The results also suggest that neither precipitation of calcium-bile acid complexes nor impaired calcium binding by bile acids is important in the pathogenesis of human calcium gallstone formation.  相似文献   

16.
Caffeic acid phenethyl ester (CAPE) is one of the most bioactive compounds of propolis, a resinous substance collected and elaborated by honeybees. A new liquid chromatography-electrospray ionisation tandem mass spectrometric method was developed and validated for its determination in rat plasma and urine, using taxifolin as internal standard. After sample preparation by liquid/liquid extraction with ethyl acetate, chromatographic separations were carried out with an ODS-RP column using a binary mobile phase gradient of acetonitrile in water. Detection was performed using a turboionspray source operated in negative ion mode and by multiple reaction monitoring. The method was validated, showing good selectivity, sensitivity (LOD = 1 ng/ml), linearity (5-1000 ng/ml; r > or = 0.9968), intra- and inter-batch precision and accuracy (< or =14.5%), and recoveries (94-106%) in both plasma and urine. Stability assays have shown that CAPE is rapidly hydrolysed by plasmatic esterases, which are however inhibited by sodium fluoride. The method was applied to the determination of CAPE levels in rat plasma and urine after oral administration, showing that CAPE is rapidly absorbed and excreted in urine both as unmodified molecule and as glucuronide conjugate.  相似文献   

17.
Difructose anhydride III (DFAIII) is a prebiotic involved in the reduction of secondary bile acids (BAs). We investigated whether DFAIII modulates BA metabolism, including enterohepatic circulation, in the rats fed with a diet supplemented with cholic acid (CA), one of the 12α-hydroxylated BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. After 2 weeks, each group was further divided into two groups and was fed diet with or without CA supplementation at 0.5 g/kg diet. BA levels were analyzed in aortic and portal plasma, liver, intestinal content, and feces. As a result, DFAIII ingestion reduced the fecal deoxycholic acid level via the partial suppression of deconjugation and 7α-dehydroxylation of BAs following CA supplementation. These results suggest that DFAIII suppresses production of deoxycholic acid in conditions of high concentrations of 12α-hydroxylated BAs in enterohepatic circulation, such as obesity or excess energy intake.

Abbreviation: BA: bile acid; BSH: bile salt hydrolase; CA: cholic acid; DCA: deoxycholic acid; DFAIII: difructose anhydride III; MCA: muricholic acid; MS: mass spectrometry; NCDs: non-communicable diseases; LC: liquid chromatography; SCFA: short-chain fatty acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TUDCA: tauroursodeoxychlic acid; TαMCA: tauro-α-muricholic acid; TβMCA: tauro-β-muricholic acid; TωMCA: tauro-ω-muricholic acid  相似文献   


18.
The extracellular glycolipids produced by the yeast, Rhodotorula bogoriensis (formerly Candida bogoriensis), were analyzed using an LC/API-MS method. The analysis confirmed that the predominant form the sophorolipid structure contained a C22 hydroxy carboxylic acid. A minor amount (<10%) of a C24 hydroxy carboxylic acid in the sophorolipid was also found, which had not been reported previously. The sophorolipid product, which contained varying degrees of acetylation at the primary hydroxy groups of the sophorose sugar, was deacetylated with sodium methoxide. The des-acetylated sophorolipid was esterified using an immobilized lipase as catalyst in tetrahydrofuran and the product analyzed by mass spectrometric techniques. The product was screened for dimer or polymer formation but only a monomeric lactonized sophorolipid structure was detected.  相似文献   

19.
Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture.  相似文献   

20.
Analysis of catecholamines (epinephrine, norepinephrine and dopamine) in plasma and urine is used for diagnosis and treatment of catecholamine-producing tumors. Current analytical techniques for catecholamine quantification are laborious, time-consuming and technically demanding. Our aim was to develop an automated on-line solid phase extraction method coupled to high performance liquid chromatography–tandem mass spectrometry (XLC–MS/MS) for the quantification of free catecholamines in urine. Five microlitre urine equivalent was pre-purified by automated on-line solid phase extraction, using phenylboronic acid complexation. Reversed phase (pentafluorophenylpropyl column) chromatography was applied. Mass spectrometric detection was operated in multiple reaction monitoring mode using a quadrupole tandem mass spectrometer with positive electrospray ionization. Urinary reference intervals were set in 24-h urine collections of 120 healthy subjects. XLC–MS/MS was compared with liquid chromatography with electrochemical detection (HPLC–ECD). Total run-time was 14 min. Intra- and inter-assay analytical variations were <10%. Linearity was excellent (R2 > 0.99). Quantification limits were 1.47 nmol/L, 15.8 nmol/L and 11.7 nmol/L for epinephrine, norepinephrine and dopamine, respectively. XLC–MS/MS correlated well with HPLC–ECD (correlation coefficient >0.98). Reference intervals were 1–10 μmol/mol, 10–50 μmol/mol and 60–225 μmol/mol creatinine for epinephrine, norepinephrine and dopamine, respectively. Advantages of the XLC–MS/MS catecholamine method include its high analytical performance by selective PBA affinity and high specificity and sensitivity by unique MS/MS fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号