首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA > LCA > CDCA > GDCA > TDCA > CA > UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.  相似文献   

2.
3.

Background

The multi-step bile acid 7α-dehydroxylating pathway by which a few species of Clostridium convert host primary bile acids to toxic secondary bile acids is of great importance to gut microbiome structure and host physiology and disease. While genes in the oxidative arm of the 7α-dehydroxylating pathway have been identified, genes in the reductive arm of the pathway are still obscure.

Methods

We identified a candidate flavoprotein-encoding gene predicted to metabolize steroids. This gene was cloned and overexpressed in E. coli and affinity purified. Reaction substrate and product were separated by thin layer chromatography and identified by liquid chromatograph mass spectrometry-ion trap-time of flight (LCMS-IT-TOF). Phylogenetic analysis of the amino acid sequence was performed.

Results

We report the identification of a gene encoding a flavoprotein (EDS08212.1) involved in secondary bile acid metabolism by Clostridium scindens ATCC 35704 and related species. Purified rEDS08212.1 catalyzed formation of a product from 3-dehydro-deoxycholic acid that UPLC-IT-TOF-MS analysis suggests loses 4 amu. Our phylogeny identified this gene in other bile acid 7α-dehydroxylating bacteria.

Conclusions

These data suggest formation of a product, 3-dehydro-4,6-deoxycholic acid, a recognized intermediate in the reductive arm of bile acid 7α-dehydroxylation pathway and the first report of a gene in the reductive arm of the bile acid 7α-dehydroxylating pathway.  相似文献   

4.
Henry Danielsson 《Steroids》1973,22(5):667-676
Various taurine-conjugated bile acids were fed to rats at the 1%-level in the diet for 3 or 7 days and the effect on several hydroxylations involved in the biosynthesis and metabolism of bile acids was studied. The hydroxylations studied were all catalyzed by the microsomal fraction of liver homogenate fortified with NADPH. The 7α-hydroxylation of cholesterol was inhibited by feeding taurocholic acid, taurocheno-deoxycholic acid and taurodeoxycholic acid for 3 as well as 7 days. No marked inhibition was obtained with taurohyodeoxycholic acid or taurolithocholic acid. The 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one was inhibited after 3 as well as 7 days by all bile acids except taurohyodeoxycholic acid. With this acid a marked stimulation of 12α-hydroxylation was observed. The effects of the different bile acids on the 7α-hydroxylation of taurodeoxycholic acid were not very marked. The 6β-hydroxylation of lithocholie acid and taurochenodeoxycholic acid was stimulated by taurocholic acid and taurodeoxycholic acid. The reaction was inhibited by taurochenodeoxycholic acid, at least after 7 days. Taurohyodeoxycholic acid inhibited the 6β-hydroxylation slightly and taurolithocholic acid had no effect. The results were discussed in the light of present knowledge concerning mechanisms of regulation of formation and metabolism of bile acids and it was suggested that the mechanisms may be more complex than previously thought.  相似文献   

5.
6.
We report a sensitive and robust method to determine cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and their taurine- and glycine-conjugate concentrations in human plasma using liquid chromatography–tandem mass spectrometry. Activated charcoal was utilized to prepare bile acid-free plasma, which served as the biological matrix for the preparation of standard and quality control samples. Plasma sample preparation involved solid-phase extraction. A total of 16 bile acids and 5 internal standards were separated on a reverse column by gradient elution and detected by tandem mass spectrometry in negative ion mode. The calibration curve was linear for all the bile acids over a range of 0.005–5 μmol/L. The extraction recoveries for all the analytes fell in the range of 88–101%. Intra-day and inter-day coefficients of variation were all below 10%. A stability test showed that all the bile acids were stable in plasma for at least 6 h at room temperature, at least three freeze–thaw cycles, in the −70 °C or −20 °C freezer for 2 months, and also in the reconstitution solution at 8 °C for 48 h. Comparison of the matrix effect of bile acid-free plasma with that of real plasma indicated that the charcoal purification procedure did not affect the properties of charcoal-purified plasma as calibration matrix. This method has been used to determine the bile acid concentrations in more than 300 plasma samples from healthy individuals. In conclusion, this method is suitable for the simultaneous quantification of individual bile acids in human plasma.  相似文献   

7.
8.
By comparing newly available cDNA sequences of the human intermediate filament protein lamin B(2) with published sequences, we have identified an additional translation initiation codon 60 nucleotides upstream of the previously assumed translation start. In addition, corresponding sequences were identified in the chimpanzee, mouse, rat and bovine genes and cDNAs, respectively. Therefore, we generated antibodies against these potential 20 new amino acids of the human sequence. By immunoblot analysis and immunofluorescence microscopy we show that human lamin B(2) is indeed synthesized as a longer version than previously reported, because it contains these additional 20 amino acids. Notably, the sequence homology to mouse, rat and bovine lamin B(2) is significantly lower in this segment than in that between the second methionine codon and the start of the alpha-helical rod indicating that the tip of the "head" is engaged in more species-specific functions. Forced expression of the GFP-tagged authentic "long" and the 20 amino acid shorter version of lamin B(2) in human cultured SW-13 cells demonstrated that both the longer and the shorter version are properly integrated into the nuclear lamina, although the shorter version exhibited a tendency to disturb envelope architecture at higher expression levels.  相似文献   

9.
Arachidonic acid (ARA) is a polyunsaturated fatty acid (PUFA) and an essential component of membrane lipids. However, the PUFA synthase required for ARA biosynthesis has not been identified in any organism. To identify the PUFA synthase producing ARA, we determined the draft genome sequence of the marine bacterium Aureispira marina, which produces a high level of ARA, and found a gene cluster encoding a putative PUFA synthase for ARA production. Expression of the gene cluster in Escherichia coli induced production of ARA, demonstrating that the gene cluster encodes a PUFA synthase required for ARA biosynthesis.  相似文献   

10.
11.
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous double-conjugates of 3beta-hydroxy-7-oxo-5-cholen-24-oic acid were also prepared. The principal reactions involved were: (1) beta-d-N-acetylglucosaminidation at C-7 of methyl 3beta-tert-butyldimethylsilyloxy (TBDMSi)-7beta-hydroxy-5-cholen-24-oate with 2-acetamido-1alpha-chloro-1,2-dideoxy-3,4,6-tri-O-acetyl-d-glucopyranose in the presence of CdCO(3) in boiling toluene; (2) sulfation at C-3 of the resulting 3beta-TBDMSi-7beta-GlcNAc with sulfur trioxide-trimethylamine complex in pyridine; and (3) direct amidation at C-24 of the 3beta-sulfooxy-7beta-GlcNAc conjugate with glycine methyl ester hydrochloride (or taurine) using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as a coupling agent in DMF. The structures of the multi-conjugated bile acids were characterized by liquid chromatography-mass spectrometry with an electrospray ionization probe under the positive and negative ionization modes.  相似文献   

12.
Odorant-binding proteins (OBPs) are small abundant soluble proteins belonging to the lipocalin superfamily, which are thought to carry hydrophobic odorants through aqueous mucus towards olfactory receptors. Human variant hOBP-2A has been demonstrated to bind numerous odorants of different chemical classes with a higher affinity for aldehydes and fatty acids. Three lysyl residues of the binding pocket (Lys62, Lys82 and Lys112) have been suggested as candidates for playing such a role. Here, using site-directed mutagenesis and fluorescent probe displacements, we show that Lys112 is the major determinant for governing hOBP-2A specificity towards aldehydes and small carboxylic acids.  相似文献   

13.
Isovaleric acidemia (IVA) is a rare autosomal recessive disorder caused by a deficiency of isovaleryl-CoA dehydrogenase encoded by IVD gene. In this case study we report the first Saudi IVA patients from a consanguineous family with a novel transversion (p.G362V) and briefly discuss likely phenotype–genotype correlation of the disease in the Saudi population. We explored the functional consequences of the mutation by using various bioinformatics prediction algorithms and discussed the likely mechanism of the disease caused by the mutation.  相似文献   

14.
Gauri SS  Mandal SM  Pati BR  Dey S 《Peptides》2011,32(4):691-696
Increasing tendency of clinical bacterial strains resistant to conventional antibiotics has being a great challenge to the public's health. Antimicrobial peptides, a new class of antibiotics is known to have the activity against a wide range of bacteria resistant to conventional antibiotics. An antimicrobial peptide of 1676 Da was purified from Bellamya bengalensis, a fresh water snail, using ultrafiltration and reversed phase liquid chromatography. The effect of this peptide on Staphylococcus epidermidis resistant to ampicillin and chloramphenicol was investigated; the MIC and MBC values were 8 μg/ml and 16 μg/ml, respectively. Complete sequence of the peptide was determined by tandem mass spectrometry (MS/MS). Further, peptide net charge, hydrophobicity and molecular modeling were evaluated in silico for better understanding the probable mechanisms of action. The peptide showed the specificity to bacterial membranes. Hence, this reported peptide revealed a promising candidate to contribute in the development of therapeutic agent for Staphylococcal infections.  相似文献   

15.
Cytokinin oxidase/dehydrogenase (CKO; EC 1.5.99.12) irreversibly degrades the plant hormones cytokinins. A recombinant maize isoenzyme 1 (ZmCKO1) produced in the yeast Yarrowia lipolytica was subjected to enzymatic deglycosylation by endoglycosidase H. Spectrophotometric assays showed that both activity and thermostability of the enzyme decreased after the treatment at non-denaturing conditions indicating the biological importance of ZmCKO1 glycosylation. The released N-glycans were purified with graphitized carbon sorbent and analyzed by MALDI-TOF MS. The structure of the measured high-mannose type N-glycans was confirmed by tandem mass spectrometry (MS/MS) on a Q-TOF instrument with electrospray ionization. Further experiments were focused on direct analysis of sugar binding. Peptides and glycopeptides purified from tryptic digests of recombinant ZmCKO1 were separated by reversed-phase chromatography using a manual microgradient device; the latter were then subjected to offline-coupled analysis on a MALDI-TOF/TOF instrument. Glycopeptide sequencing by MALDI-TOF/TOF MS/MS demonstrated N-glycosylation at Asn52, 63, 134, 294, 323 and 338. The bound glycans contained 3-14 mannose residues. Interestingly, Asn134 was found only partially glycosylated. Asn338 was the sole site to carry large glycan chains exceeding 25 mannose residues. This observation demonstrates that contrary to a previous belief, the heterologous expression in Y. lipolytica may lead to locally hyperglycosylated proteins.  相似文献   

16.
Phospholipase D (PLD) is a lipolytic enzyme involved in signal transduction, vesicle trafficking and membrane metabolism. It catalyzes the hydrolysis and transphosphatidylation of glycerophospholipids at the terminal phosphodiester bond. The presence of a PLD in the latex of Carica papaya (CpPLD1) was demonstrated by transphosphatidylation of phosphatidylcholine (PtdCho) in the presence of 2% ethanol. Although the protein could not be purified to homogeneity due to its presence in high molecular mass aggregates, a protein band was separated by SDS-PAGE after SDS/chloroform-methanol/TCA-acetone extraction of the latex insoluble fraction. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by micro-LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (723 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 2424 bp encoding a protein of 808 amino acid residues, with a theoretical molecular mass of 92.05 kDa. From sequence analysis, CpPLD1 was identified as a PLD belonging to the plant phosphatidylcholine phosphatidohydrolase family.  相似文献   

17.
UV filters protect the human lens and retina from UV light-induced damage. Here, we report the identification of a new UV filter, cysteine-l-3-hydroxykynurenine O-beta-d-glucoside, which is present in older normal human lenses. Its structure was confirmed by independent synthesis. It is likely this novel UV filter is formed in the lens by nucleophilic attack of cysteine on the unsaturated ketone derived from deamination of 3-hydroxykynurenine O-beta-d-glucoside. Quantitation studies revealed considerable variation in normal lens levels that may be traced to the marked instability of the cysteine adduct. The novel UV filter was not detected in advanced nuclear cataract lenses.  相似文献   

18.
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10/ mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism.  相似文献   

19.
Shaikh FA  Müllegger J  He S  Withers SG 《FEBS letters》2007,581(13):2441-2446
The mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-d-galactopyranoside (DNP2FGal) was used to inactivate the Family 42 beta-galactosidase (YesZ) from Bacillus subtilis via the trapping of a glycosyl-enzyme intermediate, thereby tagging the catalytic nucleophile in the active site. Proteolytic digestion of the inactivated enzyme and of a control sample of unlabeled enzyme, followed by comparative high-performance liquid chromatography and mass spectrometric analysis identified a labelled peptide of the sequence ETSPSYAASL. These data, combined with sequence alignments of this region with representative members of Family 42, unequivocally identify the catalytic nucleophile in this enzyme as Glu-295, thereby providing the first direct experimental proof of the identity of this residue within Family 42.  相似文献   

20.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号