首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transducin, a retinal G-protein, has been shown to exist as heterotrimers of alpha (39,000), beta (36,000), and gamma (approximately 7,000) subunits. Blue Sepharose CL-6B column chromatography of a transducin preparation extracted with a metal-free, low salt buffer containing GTP showed three distinct alpha and two distinct beta gamma activities in frog (Rana catesbeiana) rod outer segment. The binding of a hydrolysis-resistant GTP analog in these alpha fractions was proportional to the amount of the M(r) 39,000 protein. The first alpha was eluted in a complex with an inhibitory subunit of cGMP phosphodiesterase, but alpha subunits in the second and the third fractions were not complexed with any proteins. Two-dimensional gel electrophoresis and characterization with regard to the interaction with the inhibitory subunit of cGMP phosphodiesterase suggested that the first and the second alpha s were the same protein; however, the third alpha showed different characters as follows. We designated alpha in the first two fractions as alpha 1, and alpha in the third fraction as alpha 2. Nonlinear regression analysis for the binding of a hydrolysis-resistant GTP analog to both alpha subunits revealed a single class of GTP binding sites with an apparent stoichiometry of 1 mol of GTP/mol of alpha. Compared with alpha 1, alpha 2 required larger amounts of rhodopsin and beta gamma for the binding of a hydrolysis-resistant GTP analog. alpha 2 also showed less binding with the inhibitory subunit of cGMP phosphodiesterase. Both alpha 1 and alpha 2 complexed with beta gamma or beta delta (described below) were substrates for pertussis toxin-dependent ADP-ribosylation. The protein profiles of two beta gamma fractions revealed that the main fraction was composed of a beta gamma complex; however, the second active fraction was composed of beta complexed with delta (M(r) 12,000). Compared with beta gamma, beta delta stimulated GTP binding to alpha 1 at approximately 10-fold higher concentration. Two-dimensional gel electrophoresis revealed five beta and two gamma isoforms in beta gamma. Only one beta isoform was present in beta delta. The diversity of transducin subunits may reflect different signaling pathways in visual signal transduction.  相似文献   

2.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

3.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

4.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

5.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

6.
For reconstitution studies with rhodopsin and cGMP phosphodiesterase (PDE), all three subunits of heterotrimeric transducin (T alpha beta gamma) were simultaneously expressed in Sf9 cells at high levels using a baculovirus expression system and purified to homogeneity. Light-activated rhodopsin catalyzed the loading of purified recombinant T alpha with GTP gamma S. In vitro reconstitution of rhodopsin, recombinant transducin, and PDE in detergent solution resulted in cGMP hydrolysis upon illumination, demonstrating that recombinant transducin was able to activate PDE. The rate of cGMP hydrolysis by PDE as a function of GTP gamma S-loaded recombinant transducin (T(*)) concentration gave a Hill coefficient of approximately 2, suggesting that the activation of PDE by T(*) was cooperatively regulated. Furthermore, the kinetic rate constants for the activation of PDE by T(*) suggested that only the complex of PDE with two T(*) molecules, PDE. T(2)(*), was significantly catalytically active under the conditions of the assay. We conclude that the model of essential coactivation best describes the activation of PDE by T(*) in a reconstituted vertebrate visual cascade using recombinant heterotrimeric transducin.  相似文献   

7.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Transducin, the guanyl nucleotide-binding protein of the retinal light-activated cGMP phosphodiesterase system, is structurally and functionally similar to the inhibitory and stimulatory guanyl nucleotide-binding proteins, Gi and Gs, of the adenylate cyclase complex. All are heterotrimers composed of alpha, beta, and gamma subunits. Gs and Gi can be activated by NaF with AlCl3 as well as by agonists acting through specific receptors. The effects of NaF and AlCl3 on transducin were investigated in a reconstituted system consisting of the purified subunits of transducin (T alpha, T beta, gamma) and rhodopsin. NaF noncompetitively inhibited the GTPase activity of T alpha in a concentration- and time-dependent manner. Inhibition by NaF was enhanced synergistically by AlCl3 which alone only slightly inhibited GTPase activity. None of the other anions tested reproduced the effect of fluoride. Fluoride inhibited [3H]guanosine 5'-(beta, gamma-imido)triphosphate binding to T alpha and release of bound GDP. The ADP-ribosylation of T alpha by pertussis toxin and binding of T alpha to rhodopsin, both of which are enhanced in the presence of T beta gamma, were inhibited by NaF and AlCl3. These findings are consistent with the hypothesis that fluoride enhances the dissociation of T alpha from T beta gamma, resulting in the inhibition of GTP-GDP exchange, and therefore, GTP hydrolysis.  相似文献   

9.
RGS proteins regulate the duration of G protein signaling by increasing the rate of GTP hydrolysis on G protein alpha subunits. The complex of RGS9 with type 5 G protein beta subunit (G beta 5) is abundant in photoreceptors, where it stimulates the GTPase activity of transducin. An important functional feature of RGS9-G beta 5 is its ability to activate transducin GTPase much more efficiently after transducin binds to its effector, cGMP phosphodiesterase. Here we show that different domains of RGS9-G beta 5 make opposite contributions toward this selectivity. G beta 5 bound to the G protein gamma subunit-like domain of RGS9 acts to reduce RGS9 affinity for transducin, whereas other structures restore this affinity specifically for the transducin-phosphodiesterase complex. We suggest that this mechanism may serve as a general principle conferring specificity of RGS protein action.  相似文献   

10.
We have made use of the enhancement of the intrinsic fluorescence of the alpha subunit of transducin (alpha T), which accompanies guanine nucleotide exchange, to follow the reconstituted interactions between pure rhodopsin and pure transducin in phospholipid vesicles. When the pure alpha T.GDP complex is added to lipid vesicles containing rhodopsin and the beta gamma T complex, a light- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent enhancement of the fluorescence emission of alpha T is observed. When GTP is substituted for GTP gamma S, a similar enhancement of the intrinsic fluorescence of alpha T occurs; however, this enhancement is transient and precedes a fluorescence decay which is complete in 2-5 min. The fact that the fluorescence decay is specifically induced by GTP and is not observed either with nonhydrolyzable GTP analogs or with NaF (plus AlCl3) indicates that the decay represents GTP hydrolysis in alpha T. The dose-response profiles for the effects of the beta gamma T complex on the rate and extent of the GTP gamma S-stimulated fluorescence enhancement of alpha T have also been examined. The addition of relatively low levels of beta gamma T to these reconstituted systems can promote the GTP gamma S-stimulated enhancement of the fluorescence of multiple alpha T subunits with half-maximal enhancement occurring at alpha T:beta gamma T ratios of 150:1. These findings are consistent with earlier suggestions (Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502) that the beta gamma T subunit dissociates from alpha T as a result of the GDP-GTP exchange reaction and thus can act catalytically to promote the activation of a number of inactive alpha T species. However, the dependence of the rate of the GTP gamma S-stimulated fluorescence enhancement on beta gamma T is complex and cannot be explained adequately by simple models where alpha T-beta gamma T interactions (or rhodopsin-transducin interactions) are rate-limiting for the rhodopsin-stimulated activation of the alpha T subunits. Overall, the results reported here demonstrate that fluorescence spectroscopy can be used to monitor directly a receptor-catalyzed activation-deactivation cycle of a GTP-binding protein within a lipid milieu.  相似文献   

11.
The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high molecular size cross-linked products of PDE resulted in the concurrent loss of the P beta and P gamma subunits, suggesting that they are in close proximity. Finally, the interaction between transducin and PDE was examined by chemical cross-linking of transducin-Gpp(NH)p and PDE. Two additional cross-linked products of 180 and 210 kDa were obtained which could be due to the cross-linking of T alpha or T beta with P alpha beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The gamma-subunit of retinal rod-outer-segment phosphodiesterase (PDE-gamma) is a multifunctional protein which interacts directly with both of the catalytic subunits of PDE (PDE alpha/beta) and the alpha-subunit of the retinal G (guanine-nucleotide-binding)-protein transducin alpha (T alpha). We have previously reported that the PDE gamma binds to T alpha at residue nos. 24-45 [Morrison. Rider & Takemoto (1987) FEBS Lett. 222, 266-270]. In vitro this results in inhibition of T alpha GTP/GDP exchange [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. We now report that the inhibitory region of PDE gamma for PDE alpha/beta occurs at PDE gamma residues 54-87. This binding results in inhibition of either trypsin-solubilized or membrane-bound PDE alpha/beta. PDE gamma which has been treated with carboxypeptidase Y, removing the C-terminus, does not inhibit PDE alpha/beta, but does inhibit T alpha GTP/GDP exchange. Inhibition by PDE gamma can be removed by T alpha-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) addition to membranes. This results in a displacement of PDE gamma, but not in removal of this subunit from the membrane [Whalen, Bitensky & Takemoto (1990) Biochem. J. 265, 655-658]. These results suggest that low levels of T alpha-GTP[S] can result in displacement of PDE gamma from the membrane in vitro as a GTP[S]-T alpha-PDE gamma complex. Further activation by high levels of T alpha-GTP[S] occurs by displacement of PDE gamma from its inhibitory site on PDE alpha/beta, but not in removal from the membrane.  相似文献   

13.
J Bigay  P Deterre  C Pfister    M Chabre 《The EMBO journal》1987,6(10):2907-2913
Fluoride activation of G proteins requires the presence of aluminium or beryllium and it has been suggested that AIF4- acts as an analogue of the gamma-phosphate of GTP in the nucleotide site. We have investigated the action of AIF4- or of BeF3- on transducin (T), the G protein of the retinal rods, either indirectly through the activation of cGMP phosphodiesterase, or more directly through their effects on the conformation of transducin itself. In the presence of AIF4- or BeF3-, purified T alpha subunit of transducin activates purified cyclic GMP phosphodiesterase (PDE) in the absence of photoactivated rhodopsin. Activation is totally reversed by elution of fluoride or partially reversed by addition of excess T beta gamma. Activation requires that GDP or a suitable analogue be bound to T alpha: T alpha-GDP and T alpha-GDP alpha S are activable by fluorides, but not T alpha-GDP beta S, nor T alpha that has released its nucleotide upon binding to photoexcited rhodopsin. Analysis of previous works on other G proteins and with other nucleotide analogues confirm that in all cases fluoride activation requires that a GDP unsubstituted at its beta phosphate be bound in T alpha. By contrast with alumino-fluoride complexes, which can adopt various coordination geometries, all beryllium fluoride complexes are tetracoordinated, with a Be-F bond length of 1.55 A, and strictly isomorphous to a phosphate group. Our study confirms that fluoride activation of transducin results from a reversible binding of the metal-fluoride complex in the nucleotide site of T alpha, next to the beta phosphate of GDP, as an analogue of the gamma phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
V N Hingorani  Y Ho 《Biochemistry》1987,26(6):1633-1639
Fluorescein 5'-isothiocyanate (FITC) was used to modify the lysine residues of bovine transducin (T), a GTP-binding protein involved in phototransduction of rod photoreceptor cells. The incorporation of FITC showed a stoichiometry of approximately 1 mol of FITC/mol of transducin. The labeling was specific for the T alpha subunit. There was no significant incorporation on the T beta gamma subunit. The modification had no effect on the transducin-rhodopsin interaction or on the binding of guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] to transducin in the presence of photolyzed rhodopsin. The dissociation of the FITC-transducin-Gpp(NH)p complex from rhodopsin membrane remained unchanged. However, the intrinsic GTPase activity of T alpha and its ability to activate the cGMP phosphodiesterase were diminished by FITC modification. The rate of FITC labeling of the transducin-Gpp(NH)p complex was about 3-fold slower than that of transducin. Limited tryptic digestion and peptide mapping were used to localize the FITC labeling site. The majority of the FITC label was on the 23-kilodalton fragment, and a minor amount was on the 9-kilodalton fragment of the T alpha subunit. These results indicate that FITC labeling does not alter the activation of transducin by photolyzed rhodopsin but does affect the GTP hydrolytic activity as well as the GTP-induced conformational change of T alpha, which ultimately leads to the activation of cGMP phosphodiesterase.  相似文献   

15.
The cyclic GMP phosphodiesterase of retinal rods is composed of three distinct polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). In this multimeric form, the enzyme is inhibited. Its activity is stimulated by the interaction with the GTP-bound form of the T alpha subunit of transducin and reversed upon the recombination of the inhibitory gamma subunit with the catalytic alpha beta subunit. We show here by a novel coimmunoprecipitation technique that the gamma subunit, but not the alpha beta subunit, forms a 1:1 complex with T alpha. The binding of gamma to T alpha is nucleotide-dependent and is facilitated by GTP gamma S or Gpp(NH)p. This study provides convincing evidence that the T alpha-GTP subunit of transducin stimulates phosphodiesterase activity by binding to gamma and physically carrying it away from alpha beta.  相似文献   

16.
The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5'-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].  相似文献   

17.
The visual excitation system of the retinal rod outer segments and the hormone-sensitive adenylate cyclase complex are regulated through guanine nucleotide-binding proteins, transducin in the former and inhibitory and stimulatory regulatory components, Gi and Gs, in the latter. These proteins are functionally and structurally similar; all are heterotrimers composed of alpha, beta, and gamma subunits and exhibit guanosine triphosphatase activity stimulated by light-activated rhodopsin or the agonist-receptor complex. Adenylate cyclase can be stimulated by vanadate, which, like NaF, probably acts through Gs. Effects of vanadate on the function of a guanine nucleotide-binding protein were investigated in a reconstituted model system consisting of purified transducin subunits (T alpha, T beta gamma) and rhodopsin in phosphatidylcholine vesicles. Vanadate (decameric) inhibited [3H]GTP binding to T alpha and noncompetitively inhibited GTP hydrolysis in a concentration-dependent manner with maximal inhibition of approximately 90% at 3-5 mM. Vanadate also inhibited release of bound GDP but did not affect the rate of hydrolysis of bound GTP (single turnover rate), indicating that vanadate did not interfere with the intrinsic GTPase activity of T alpha. Binding of T alpha to rhodopsin and the ADP-ribosylation of T alpha by pertussis toxin, both of which are enhanced in the presence of T beta gamma, were inhibited by vanadate. These findings are consistent with the conclusion that vanadate can cause the dissociation of T alpha from T beta gamma, resulting in the inhibition of GDP-GTP exchange and thereby GTP hydrolysis. Adenylate cyclase activation could result from a similar effect of vanadate on Gs.  相似文献   

18.
The effect of GDP on rod outer segment G-protein interactions   总被引:1,自引:0,他引:1  
The role of GDP has heretofore been little studied in the analysis of visual receptor G-protein (G) interactions. Here we use kinetically resolved absorption and light scattering spectroscopy, centrifugation, porous membrane filtration, and enzyme assay to compare the effectiveness of GDP with that of GTP or gamma-thio-guanosine-5'-triphosphate in the modulation of G-protein binding to rod disc membranes and activated receptor (R*). We also compare effectiveness of GDP with that of GTP in the separation of G alpha and G beta gamma subunits and in activation of effector, cGMP phosphodiesterase. We find that when different nucleotide affinities are taken into account, actions such as the release of G from R* binding, earlier ascribed to GTP alone, are also typical of GDP. The principal specific actions of GTP that occur only weakly or undetectably for GDP are, respectively, the release of G-protein subunits from the membrane into solution and activation of phosphodiesterase. While GDP, like GTP, releases G-protein binding to receptor, we argue that GDP cannot mediate G-protein subunit separation, even on the membrane surface. GDP retained on G-protein after GTP hydrolysis may function to prevent tight binding to quiescent receptors in a manner analogous to its action on G-protein binding to activated receptors. Weak binding of G.GDP may function to accelerate receptor catalyzed amplification during transduction.  相似文献   

19.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

20.
The GTP-binding protein of Bufo marinus rod outer segments (ROS) is composed of 3 subunits: G alpha, 39,000; G beta, 36,000; and G gamma, approximately 6,500. A stepwise analysis of the GTP hydrolytic cycle (GTP binding, GTP hydrolysis, and GDP release) was facilitated by using purified subunits of the GTP-binding protein. When G alpha and G beta, gamma concentrations were held constant, the initial rate of guanosine-5'-O-(3-thiotriphosphate) (GTP gamma-s) binding to G alpha was dependent upon the amount of bleached rhodopsin present (as illuminated, urea-washed ROS disc membranes). When G alpha and the quantity of these membranes was held constant, the initial rate of GTP gamma-s binding to G alpha was markedly enhanced by increasing the amount of G beta, gamma. G beta preparations (free of G gamma) also stimulated the binding of GTP gamma-s to G alpha to the same extent as G beta, gamma preparations, suggesting that G gamma is not an essential component of the G beta, gamma-dependent stimulation of the rate of GTP gamma-s binding to G alpha. Nonlinear regression analysis revealed a single class of binding sites with an apparent stoichiometry of 1 mol of site/mol of G alpha under optimal binding conditions. Following GTP binding to G alpha, the GTP X G alpha complex dissociates from G beta, gamma which remains primarily bound to the ROS disc membranes. Moreover, while GTP remains in excess, the rates of GTP hydrolysis exhibited saturation in the presence of increasing amounts of G beta, gamma. Nonlinear regression analysis of these data argues against a direct role for G beta, gamma in the hydrolysis of GTP. Thus, both topologic and kinetic data support the concept that GTP hydrolysis is carried out by G alpha alone. After hydrolysis of GTP, the GDP X G alpha complex returned to the ROS disc membrane when G beta, gamma was present on the membrane surface, in the presence and absence of light. Without guanine nucleotides GDP release occurred in the presence of illuminated ROS disc membranes and G beta, gamma. Guanine nucleotides (GTP gamma-s approximately equal to GTP approximately equal to guanosine 5'-(beta, gamma-imido)triphosphate greater than GDP) could effectively displace GDP from G alpha under these conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号