首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

3.
Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin less than 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels less than 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a "two-site" binding model [L.S. Rosenberg, M.J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002-1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1-0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes (less than or equal to 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15-25% decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1-guanine N7 DNA adducts.  相似文献   

4.
Although protein-protein interactions are involved in nearly all cellular processes, general rules for describing affinity and selectivity in protein-protein complexes are lacking, primarily because correlations between changes in protein structure and binding energetics have not been well determined. Here, we establish the structural basis of affinity maturation for a protein-protein interaction system that we had previously characterized energetically. This model system exhibits a 1500-fold affinity increase. Also, its affinity maturation is restricted by negative intramolecular cooperativity. With three complex and six unliganded variant X-ray crystal structures, we provide molecular snapshots of protein interface remodeling events that span the breadth of the affinity maturation process and present a comprehensive structural view of affinity maturation. Correlating crystallographically observed structural changes with measured energetic changes reveals molecular bases for affinity maturation, intramolecular cooperativity, and context-dependent binding.  相似文献   

5.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

6.
Quantitative analysis of the interactions of the Escherichia coli primosomal PriB protein with a single-stranded DNA was done using quantitative fluorescence titration, photocrosslinking, and analytical ultracentrifugation techniques. Stoichiometry studies were done with a series of etheno-derivatives of single-stranded (ss) DNA oligomers. Interactions with the unmodified nucleic acids were studied, using the macromolecular competition titration (MCT) method. The total site-size of the PriB dimer-ssDNA complex, i.e. the maximum number of nucleotides occluded by the PriB dimer in the complex, is 12 ± 1 nt. The protein has a single DNA-binding site, which is located centrally within the dimer and has a functionally homogeneous structure. The stoichiometry and photocrosslinking data show that only a single monomer of the PriB dimer engages in interactions with the nucleic acid. The analysis of the PriB binding to long oligomers was done using a statistical thermodynamic model that takes into account the overlap of potential binding sites and cooperative interactions. The PriB dimer binds the ssDNA with strong positive cooperativity. Both the intrinsic affinity and cooperative interactions are accompanied by a net ion release, with anions participating in the ion exchange process. The intrinsic binding process is an entropy-driven reaction, suggesting strongly that the DNA association induces a large conformational change in the protein. The PriB protein shows a dramatically strong preference for the homo-pyrimidine oligomers with an intrinsic affinity higher by about three orders of magnitude, as compared to the homo-purine oligomers. The significance of these results for PriB protein activity is discussed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The biological activity of the double-ring chaperonin GroEL is regulated by complex allosteric interactions, which include positive intra-ring and negative inter-ring cooperativity. To further characterize inter-ring communication, the nucleotide-induced absorbance changes in the vibrational spectrum of the chaperonin GroEL, of two single-point mutants suppressing one inter-ring ionic contact (E461K and E434K) and of a single-ring version of this protein, were investigated by time-resolved infrared difference spectroscopy. Interaction of the nucleotide with the proteins was triggered by its photochemical release from a biologically inactive caged precursor [P3-1-(2-nitro) phenylethyl nucleotide]. The results indicate that (1) ATP binding to the protein induces a conformational change that affects concomitantly both intra-ring and inter-ring communication, and (2) the experimental absorbance changes are sensitive to the double-ring structure of the protein. The characterization of the single-point, inter-ring mutants demonstrates that ionic interactions at both contact sites are involved in the transmission of the allosteric signal. However, both mutations have different effects on the inter-ring interface. While that of E461K still retains ionic contacts sensitive to ATP binding, E434K shows spectroscopic features similar to those of the single-ring version of the protein, therefore suggesting that electrostatic interactions at these contact sites contribute differently to the stability of the inter-ring interface.  相似文献   

14.
Many cellular processes are sensitive to levels of cholesterol in specific membranes and show a strongly sigmoidal dependence on membrane composition. The sigmoidal responses of the cholesterol sensors involved in these processes could arise from several mechanisms, including positive cooperativity (protein effects) and limited cholesterol accessibility (membrane effects). Here, we describe a sigmoidal response that arises primarily from membrane effects due to sharp changes in the chemical activity of cholesterol. Our models for eukaryotic membrane-bound cholesterol sensors are soluble bacterial toxins that show an identical switch-like specificity for endoplasmic reticulum membrane cholesterol. We show that truncated versions of these toxins fail to form oligomers but still show sigmoidal binding to cholesterol-containing membranes. The nonlinear response emerges because interactions between bilayer lipids control cholesterol accessibility to toxins in a threshold-like fashion. Around these thresholds, the affinity of toxins for membrane cholesterol varies by >100-fold, generating highly cooperative lipid-dependent responses independently of protein-protein interactions. Such lipid-driven cooperativity may control the sensitivity of many cholesterol-dependent processes.  相似文献   

15.
16.
17.
18.
Establishing a quantitative understanding of the determinants of affinity in protein–protein interactions remains challenging. For example, TEM‐1/β‐lactamase inhibitor protein (BLIP) and SHV‐1/BLIP are homologous β‐lactamase/β‐lactamase inhibitor protein complexes with disparate Kd values (3 nM and 2 μM, respectively), and a single substitution, D104E in SHV‐1, results in a 1000‐fold enhancement in binding affinity. In TEM‐1, E104 participates in a salt bridge with BLIP K74, whereas the corresponding SHV‐1 D104 does not in the wild type SHV‐1/BLIP co‐structure. Here, we present a 1.6 Å crystal structure of the SHV‐1 D104E/BLIP complex that demonstrates that this point mutation restores this salt bridge. Additionally, mutation of a neighboring residue, BLIP E73M, results in salt bridge formation between SHV‐1 D104 and BLIP K74 and a 400‐fold increase in binding affinity. To understand how this salt bridge contributes to complex affinity, the cooperativity between the E/K or D/K salt bridge pair and a neighboring hot spot residue (BLIP F142) was investigated using double mutant cycle analyses in the background of the E73M mutation. We find that BLIP F142 cooperatively stabilizes both interactions, illustrating how a single mutation at a hot spot position can drive large perturbations in interface stability and specificity through a cooperative interaction network. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
Abstract

Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin ? 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels ? 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a “two-site” binding model [L.S. Rosenberg, M J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002–1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1–0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes ? 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15–25 % decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1,-guanine N7 DNA adducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号