首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 39-43 residue polypeptide (amyloid beta protein, beta A4) deposited as amyloid in Alzheimer's disease (AD) is derived from a set of 695-770 residue precursors referred to as the amyloid beta A4 protein precursor (beta APP). In each of the 695, 751, and 770 residue precursors, the 43 residue beta A4 is an internal peptide that begins 99 residues from the COOH-terminus of the beta APP. Each holoform is normally cleaved within the beta A4 to produce a large secreted derivative as well as a small membrane associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire beta A4 peptide. In this study, we employ cells stably transfected with full length beta APP695, beta APP751, or beta APP770 expression constructs to show that phorbol ester activation of protein kinase C substantially increases the production of secreted forms from each isoform. By increasing processing of beta APP in the secretory pathway, PKC phosphorylation may help to prevent amyloid deposition.  相似文献   

2.
The 39-43 amino acid beta amyloid protein (A beta) that deposits as amyloid in the brains of patients with Alzheimer's disease (AD) is encoded as an internal sequence within a larger membrane-associated protein known as the amyloid protein precursor (APP). In cultured cells, the APP is normally cleaved within the A beta to generate a large secreted derivative and a small membrane-associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire A beta. Our study was designed to determine whether the soluble APP derivatives in human brain end within the A beta as described in cell culture or whether AD brain produces potentially amyloidogenic soluble derivatives that contain the entire A beta. We find that both AD and control brain contain nonamyloidogenic soluble derivatives that end at position 15 of the A beta. We have been unable to detect any soluble derivatives that contain the entire A beta in either the AD or control brain.  相似文献   

3.
Intracellular trafficking and proteolytic processing of amyloid precursor protein (APP) have been the focus of numerous investigations over the past two decades. APP is the precursor to the amyloid beta-protein (Abeta), the 38-43-amino acid residue peptide that is at the heart of the amyloid cascade hypothesis of Alzheimer disease (AD). Tremendous progress has been made since the initial identification of Abeta as the principal component of brain senile plaques of individuals with AD. Specifically, molecular characterization of the secretases involved in Abeta production has facilitated cell biological investigations on APP processing and advanced efforts to model AD pathogenesis in animal models. This minireview summarizes salient features of APP trafficking and amyloidogenic processing and discusses the putative biological functions of APP.  相似文献   

4.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

5.
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.  相似文献   

6.
A distinguishing feature of Alzheimer's disease (AD) is the deposition of amyloid plaques in brain parenchyma. These plaques arise by the abnormal accumulation of beta A4, a proteolytic fragment of amyloid precursor protein (APP). Despite the fact that neurons are dramatically affected in the course of the disease, little is known about the neuronal processing of APP. To address this question we have expressed in fully mature, synaptically active rat hippocampal neurons, the neuronal form of human APP (APP695), two mutant forms of human APP associated with AD, and the mouse form of APP (a species known not to develop amyloid plaques). Protein expression was achieved via the Semliki Forest Virus system. Expression of wild type human APP695 resulted in the secretion of beta A4-amyloid peptide and the intracellular accumulation of potential amyloidogenic and non-amyloidogenic fragments. The relative amount of amyloid-containing fragments increased dramatically during expression of the clinical mutants, while it decreased strongly when the mouse form of APP was expressed. 'Humanizing' the rodent APP sequence by introducing three mutations in the beta A4-region also led to increased production of amyloid peptide to levels similar to those obtained with human APP. The single Gly601 to Arg substitution alone was sufficient to triple the ratio of beta A4-peptide to non-amyloidogenic p3-peptide. Due to the capacity of these cells to secrete and accumulate intracellular amyloid fragments, we hypothesize that in the pathogenesis of AD there is a positive feed-back loop where neurons are both producers and victims of amyloid, leading to neuronal degeneration and dementia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
beta-Amyloid (A beta) deposition in fibril form is the central event in a number of diseases, including Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis - Dutch type (HCHWA-D). A beta is produced by degradation of a larger amyloid precursor protein (APP). Recently a mutation in the APP gene has been found in HCHWA-D causing a glutamine for glutamic acid substitution at residue 22 of A beta. The influence of this mutation on fibrillogenesis is not known, although it is clear that affected patients have accelerated cerebrovascular amyloid deposition, with disease symptoms early in life. We report the in vitro demonstration of accelerated fibril formation in a 28 residue synthetic peptide homologous to the Dutch variant A beta. Furthermore, in eight residue peptides homologous to A beta the presence of the mutation is necessary for fibril formation. These findings provide a mechanism for accelerated amyloid formation in the Dutch variant of APP.  相似文献   

8.
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.  相似文献   

9.
Aggregates of beta-amyloid peptide (Abeta) are the major component of the amyloid core of the senile plaques observed in Alzheimer's disease (AD). Abeta results from the amyloidogenic processing of its precursor, the amyloid precursor protein (APP), by beta- and gamma-secretase activities. If beta-secretase has recently been identified and termed BACE, the identity of gamma-secretase is still obscure. Studies with knock-out mice showed that presenilin 1 (PS1), of which mutations are known to be the first cause of inherited AD, is mandatory for the gamma-secretase activity. However, the proteolytic activity of PS1 remains a matter of debate. Here we used transfected Sf9 insect cells, a cellular model lacking endogenous beta- and/or gamma-secretase activities, to characterize the role of BACE and PS1 in the amyloidogenic processing of human APP. We show that, in Sf9 cells, BACE performs the expected beta-secretase cleavage of APP, generating C99. We also show that C99, which is a substrate of gamma-secretase, tightly binds to the human PS1. Despite this interaction, Sf9 cells still do not produce Abeta. This strongly argues against a direct proteolytic activity of PS1 in APP processing, and points toward an implication of PS1 in trafficking/presenting its substrate to the gamma-secretase.  相似文献   

10.
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed.  相似文献   

11.
Alzheimer's disease (AD) is the most common form of dementia in the aged population. Early-onset familial AD (FAD) involves mutations in a gene on chromosome 21 encoding the amyloid protein precursor or on chromosomes 14 or 1 encoding genes known as presenilins. All mutations examined have been found to increase the production of amyloidogenic forms of the amyloid protein (A), a 4 kDa peptide derived from APP. Despite the remarkable progress in elucidating the biochemical mechanisms responsible for AD, little is known about the normal function of APP. A model of how APP and A are involved in pathogenesis is presented. This model may explain why certain neuronal populations are selectively vulnerable in AD. It is suggested that those neurons which more readily undergo neuritic sprouting and synaptic remodelling are more vulnerable to A neurotoxicity.  相似文献   

12.
A huge amount of evidence has implicated amyloid beta (A beta) peptides and other derivatives of the amyloid precursor protein (beta APP) as central to the pathogenesis of Alzheimer's disease (AD). It is also widely recognized that age is the most important risk factor for AD and that the innate immune system plays a role in the development of neurodegeneration. Little is known, however, about the molecular mechanisms that underlie age-related changes of innate immunity and how they affect brain pathology. Aging is characteristically accompanied by a shift within innate immunity towards a pro-inflammatory status. Pro-inflammatory mediators such as tumour necrosis factor-alpha or interleukin-1 beta can then in combination with interferon-gamma be toxic on neurons and affect the metabolism of beta APP such that increased concentrations of amyloidogenic peptides are produced by neuronal cells as well as by astrocytes. A disturbed balance between the production and the degradation of A beta can trigger chronic inflammatory processes in microglial cells and astrocytes and thus initiate a vicious circle. This leads to a perpetuation of the disease.  相似文献   

13.
14.
Alzheimer beta-amyloid peptides: normal and abnormal localization   总被引:5,自引:0,他引:5  
Alzheimer's disease (AD) neuropathology is characterized by accumulation of "senile" plaques (SPs) and neurofibrillary tangles (NFTs) in vulnerable brain regions. SPs are principally composed of aggregates of up to 42/43 amino acid beta-amyloid (A beta) peptides. The discovery of familial AD (FAD) mutations in the genes for the amyloid precursor protein (APP) and presenilins (PSs), all of which increase A beta42 production, support the view that A beta is centrally involved in the pathogenesis of AD. A beta42 aggregates readily, and is thought to seed the formation of fibrils, which then act as templates for plaque formation. A beta is generated by the sequential intracellular cleavage of APP by beta-secretase to generate the N-terminal end of A beta, and intramembranous cleavage by gamma-secretase to generate the C-terminal end. Cell biological studies have demonstrated that A beta is generated in the ER, Golgi, and endosomal/lysosomal system. A central question involving the role of A beta in AD concerns how A beta causes disease and whether it is extracellular A beta deposition and/or intracellular A beta accumulation that initiates the disease process. The most prevalent view is that SPs are composed of extracellular deposits of secreted A beta and that A beta causes toxicity to surrounding neurons as extracellular SP. The recent emphasis on the intracellular biology of APP and A beta has led some investigators to consider the possibility that intraneuronal A beta may directly cause toxicity. In this review we will outline current knowledge of the localization of both intracellular and extracellular A beta.  相似文献   

15.
Genetic study of familial cases of Alzheimer's disease   总被引:2,自引:0,他引:2  
A small number (1-5%) of Alzheimer's disease (AD) cases associated with the early-onset form of the disease (EOAD) appears to be transmitted as a pure genetic, autosomal dominant trait. To date, three genes responsible for familial EOAD have been identified in the human genome: amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutations in these genes account for a significant fraction (18 to 50%) of familial cases of early onset AD. The mutations affect APP processing causing increased production of the toxic Abeta42 peptide. According to the "amyloid cascade hypothesis", aggregation of the Abeta42 peptide in brain is a primary event in AD pathogenesis. In our study of twenty AD patients with a positive family history of dementia, 15% (3 of 20) of the cases could be explained by coding sequence mutations in the PS1 gene. Although a frequency of PS1 mutations is less than 2% in the whole population of AD patients, their detection has a significant diagnostic value for both genetic counseling and treatment in families with AD.  相似文献   

16.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

17.
Presenilins (PS1/PS2) play a critical role in proteolysis of beta-amyloid precursor protein (beta APP) to generate beta-amyloid, a peptide important in the pathogenesis of Alzheimer's disease. Nevertheless, several regulatory functions of PS1 have also been reported. Here we demonstrate, in neuroblastoma cells, that PS1 regulates the biogenesis of beta APP-containing vesicles from the trans-Golgi network and the endoplasmic reticulum. PS1 deficiency or the expression of loss-of-function variants leads to robust vesicle formation, concomitant with increased maturation and/or cell surface accumulation of beta APP. In contrast, release of vesicles containing beta APP is impaired in familial Alzheimer's disease (FAD)-linked PS1 mutant cells, resulting in reduced beta APP delivery to the cell surface. Moreover, diminution of surface beta APP is profound at axonal terminals in neurons expressing a PS1 FAD variant. These results suggest that PS1 regulation of beta APP trafficking may represent an alternative mechanism by which FAD-linked PS1 variants modulate beta APP processing.  相似文献   

18.
Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  相似文献   

19.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

20.

Background

The identification of early mechanisms underlying Alzheimer''s Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics.

Methods and Findings

We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans.

Conclusions

Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号