首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attachment and structural features of flagella of certain bacilli   总被引:19,自引:13,他引:6  
Abram, Dinah (Purdue University, Lafayette, Ind.), A. E. Vatter, and Henry Koffler. Attachment and structural features of flagella of certain bacilli. J. Bacteriol. 91:2045-2068. 1966.-The attachment of flagella to cells of various mesophilic and thermophilic strains of Bacillus was studied electron microscopically. Studies of ghost cells and membrane fragments indicate that flagella are connected to the cytoplasmic membrane. Flagella removed from cells mechanically, during autolysis, or by phage lysis, have attached to the base of their proximal hooks material that is heterogeneous in character. In part, this material consists of cytoplasmic membrane; its varied shape appears to be caused by the folding of the membrane around the proximal end of the flagellum at the site of attachment. It is uncertain whether this material represents a real structure or an artifact. Highresolution microscopy reveals differences in the fine structure of intact flagella of the various strains studied. The proximal hook and the flagellar filament are distinct in morphology and fine structure. A specialized structure is associated with the hook of flagella of B. brevis and B. circulans. The filament of flagella of B. stearothermophilus 2184 has two regions that show marked differences in the manner in which the subunits appear to be organized. No correlation was found between the site of origin of flagella and the location of reduced tellurite when the reduction of potassium tellurite was used to indicate the loci of enzymatic respiratory activities.  相似文献   

2.
In Caulobacter crescentus biogenesis of the flagellar organelle occurs during one stage of its complex life cycle. Thus in synchronous cultures it is possible to assay the sequential synthesis and assembly of the flagellum and hook in vivo with a combination of biochemical and radioimmunological techniques. The periodicity of synthesis and the subcellular compartmentation of the basal hook and filament subunits were determined by radioimmune assay procedures. Unassembled 27,000-dalton (27K) flagellin was preferentially located in isolated membrane fractions, whereas the 25K flagellin was distributed between the membrane and cytoplasm. The synthesis of hook began before that of flagellin, although appreciable overlap of the two processes occurred. Initiation of filament assembly coincided with the association of newly synthesized hook and flagellin subunits. Caulobacter flagella are unusual in that they contain two different flagellin subunits. Data are presented which suggest that the ratio of the two flagellin subunits changes along the length of the filament. Only the newly synthesized 25K flagellin subunit is detected in filaments assembled during the swarmer cell stage. By monitoring the appearance of flagellar hooks in the culture medium, the time at which flagella are released was determined.  相似文献   

3.
Among flagellar mutants of Escherichia coli, flaM or flaU mutants form basal bodies lacking the outer P and L rings, whereas flaY mutants predominantly form basal bodies lacking the L ring. In these mutants, hooks and filaments are occasionally assembled onto these incomplete basal bodies. When the hook protein gene, flaFV, of Salmonella typhimurium was cloned on the multicopy plasmid pBR322 and introduced into these mutants, the efficiency with which cells assembled hooks and filaments onto the incomplete basal bodies increased significantly. Such cells formed characteristic dotted swarms on semisolid plates, indicating that cells carrying flagella without the outer rings are weakly motile because of poor function of their flagella, a low flagellar number per cell, or both of these defects. FlaV mutants also produced incomplete basal bodies lacking the outer rings, but assembly of hooks and filaments did not occur in these mutants even after introduction of the plasmid carrying flaFV of S. typhimurium. The failure in the case of flaV mutants was attributed to their inability to modify the rod tip to the structure competent for assembly of hook protein.  相似文献   

4.
Flagellar assembly mutants in Escherichia coli   总被引:29,自引:28,他引:1       下载免费PDF全文
Genetic and biochemical analysis of mutants defective in the synthesis of flagella in Escherichia coli revealed an unusual class of mutants. These mutants were found to produce short, curly, flagella-like filaments with low amplitude ( approximately 0.06 mum). The filaments were connected to characteristic flagellar basal caps and extended for 1 to 2 mum from the bacterial surface. The mutations in these strains were all members of one complementation group, group E, which is located between his and uvrC. The structural, serological, and chemical properties of the filament derived from the mutants closely resemble those of the flagellar hook structure. On the basis of these properties, it is suggested that these filaments are "polyhooks", i.e., repeated end-to-end polymers of the hook portion of the flagellum. Polyhooks are presumed to be the result of a defective cistron which normally functions to control the length of the hook region of the flagellum.  相似文献   

5.
The flagellar hook is a short, curved, extracellular structure located between the basal body and the filament. The hook is composed of the FlgE protein. In this study, we analyzed flagellum assembly in a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium. When the mutant cells were grown at 30°C, they produced flagella of a normal length (71% of the population) and short hooks without filaments (26%). At 37°C, 70% of the basal bodies lacked hooks, and intact flagella made up only 6% of the population. Mutant cells secreted monomeric FlgE in abundance at 37°C, suggesting that the mutant FlgE protein might be defective in polymerization at higher temperatures. The average length of the hooks in intact filaments was 55 nm, whereas after acid treatment, it was 45 nm. SDS-PAGE analysis of the hook-basal body showed that HAP1 was missing in the mutant but not in the wild type. We concluded that hook length in the mutant is controlled in the same way as in the wild type, but the hook appeared short after acid treatment due to the lack of HAP1. We also learned that the true length of the hook is possibly 45 nm, not 55 nm, as has been believed.  相似文献   

6.
High-resolution electron microscopy of polarly flagellated bacteria revealed that their flagella originate at a circular, differentiated portion of the cytoplasmic membrane approximately 25 nm in diameter. The flagella also have discs attaching them to the cell wall. These attachment discs are extremely resistant to lytic damage and are firmly bound to the flagella. The cytoplasm beneath the flagellum contains a granulated basal body about 60 nm in diameter, and a specialized polar membrane. The existence of membrane-bound basal bodies is shown to be an artifact arising from adherence of cell wall and cytoplasmic membrane fragments to flagella in lysed preparations. Based on structures observed, a mechanism to explain bacterial flagellar movement is proposed. Flagella are considered to be anchored to the cell wall and activated by displacement of underlying cytoplasmic membrane to which they are also firmly attached. An explanation for the membrane displacement is given.  相似文献   

7.
Electron microscopy of thin-sectioned Spirillum volutans (ATCC 19554) showed that at the insertion site of the flagellum there was a cylindrical structure with a diameter of ca. 36 nm which extended ca. 19 nm into the cytoplasm. This structure, termed a cytoplasmic flagellar base, enclosed a central rod which was continuous with the hook. There was a continuation of the flagellar base into the peptidoglycan layer, enclosing ringlike structures and the central rod. The flagellar hook and proximal part of the flagellar filament contained a central channel which was large enough to accommodate the flagellin subunit. The flagella of fixed cells may project perpendicularly from the outer membrane in a position corresponding to a trailing, swimming orientation or may bend almost parallel to the membrane in a leading orientation. Maximum bending occurred in the hook region, which may be the structure responsible for executing changes in swimming direction.  相似文献   

8.
A method for preparing bacterial flagellar hook structures is described. The method involves isolating intact flagella from a mutant which makes thermally labile flagellar filaments and heat-treating them to disaggregate the filament preferentially. The resulting hook preparation can be separated and purified by velocity and isopycnic centrifugation. The purified hooks sediment at a relative S value of 77. On acrylamide gel electrophoresis in sodium dodecyl sulfate, they show one major and a number of minor protein bands. The purified hooks can be used to immunize rabbits, and the resulting antiserum is hook-specific. These results support the notion that hooks are composed of a protein that differs from flagellin.  相似文献   

9.
S Khan  I H Khan    T S Reese 《Journal of bacteriology》1991,173(9):2888-2896
The structure of the flagellar base in Salmonella typhimurium has been studied by rapid-freeze techniques. Freeze-substituted thin sections and freeze-etched replicas of cell envelope preparations have provided complementary information about the flagellar base. The flagellar base has a bell-shaped extension reaching as far as 50 nm into the bacterial cytoplasm. This structure can be recognized in intact bacteria but was studied in detail in cell envelopes, where some flagella lacking parts of the bell were helpful in understanding its substructure. Structural relationships may be inferred between this cytoplasmic component of the flagellum and the recently described flagellar intramembrane particle rings as well as the structures associated with the basal body in isolated, chemically fixed flagella.  相似文献   

10.
The proximal hooks of plain and complex flagella produced by a strain of Pseudomonas rhodos have been analyzed by electron microscopy and optical diffraction and filtering. Plain flagellar hooks are cone-shaped, 70 nm long, and 13 to 21.5 nm wide, and consist of helically arranged subunits. Complex flagellar hooks are cylinders, 180 to 190 nm long, and 15 to 16 nm wide, and are composed of globular subunits. The structure comprises four small-scale helical rows of subunits intersecting bewteen 10 and 11 large-scale helices of pitch angle 80 degrees. The axial and lateral dimensions of the unit cell, which define the surface lattice, are 4.9 and 4.7 nm, respectively. In addition, a core structure, approximately 5 nm wide, has been demonstrated inside the hook cylinder. Complex flagellar hooks were isolated and purified by gradient centrifugation after acid degradation of the attached filaments. Isolated hook particles have an average sedimentation constant of 130S and consist of a protein of molecular weight 43,000. A model of the complex flagellar hook is presented, and its possible role in flagellar assembly and rotation is discussed.  相似文献   

11.
Basal structure and attachment of flagella in cells of Proteus vulgaris   总被引:18,自引:14,他引:4  
Abram, Dinah (Purdue University, Lafayette, Ind.), Henry Koffler, and A. E. Vatter. Basal structure and attachment of flagella in cells of Proteus vulgaris. J. Bacteriol. 90:1337-1354. 1965.-The attachment of flagella to cells of Proteus vulgaris was studied electron microscopically with negatively stained and shadow-cast preparations of ghosts from standard cultures and from special cultures that produced "long forms." The flagellum, the basal portion of which is hooked, arises within the cell from a nearly spherical structure, 110 to 140 A in diameter. This structure appears to be associated with the cytoplasmic membrane; it may be a part of the membrane or a separate entity that lies just beneath the membrane. Flagella associated with cell walls free from cytoplasmic membrane frequently have larger bodies, 200 to 700 A in diameter, associated with their base. These structures probably consist at least partly of fragments of the cytoplasmic membrane, a portion of which folds around a smaller structure. Flagella in various stages of development were observed in long forms of P. vulgaris cells grown at low temperature. The basal structure of these flagella was similar to that of the long or "mature" flagella. Strands connecting the basal structures were observed in ghosts of long forms; these strands appear to be derived from the cytoplasmic membrane. Flagella were found to be attached to fragments of cell wall and to cytoplasmic membrane in a similar manner as they are attached to ghosts. In isolates of flagella that have been separated from the cells mechanically, the organelles often terminate in hooks which almost always appear naked, but have a different fine structure than the flagellum proper.  相似文献   

12.
Compliance of bacterial polyhooks measured with optical tweezers.   总被引:3,自引:0,他引:3  
S M Block  D F Blair  H C Berg 《Cytometry》1991,12(6):492-496
In earlier work, a single-beam gradient force optical trap ("optical tweezers") was used to measure the torsional compliance of flagella in wild-type cells of Escherichia coli that had been tethered to glass by a single flagellum. This compliance was nonlinear, exhibiting a torsionally soft phase up to 180 degrees, followed by a torsionally rigid phase for larger angles. Values for the torsional spring constant in the soft phase were substantially less than estimates based on the rigidity determined for isolated flagellar filaments. It was suggested that the soft phase might correspond to wind-up of the flagellar hook, and the rigid phase to wind-up of the stiffer filament. Here, we have measured the torsional compliance of flagella on cells of an E. coli strain that produces abnormally long hooks but no filaments. The small-angle compliance of these cells, as determined from the elastic rebound of the cell body after wind-up and release, was found to be the same as for wild-type cells. This confirms that the small-angle compliance of wild-type cells is dominated by the response of the hook. Hook flexibility is likely to play a useful role in stabilizing the flagellar bundle.  相似文献   

13.
A procedure is described for the purification of the Escherichia coli outer membrane (lipopolysaccharide or L membrane) with flagella still attached. The resulting lipopolysaccharide membrane was in the form of vesicles that had a trilaminar structure in thin section and contained about 55% lipopolysaccharide and 45% protein. T2 or T4 phage preadsorbed to E. coli were found attached to the purified lipopolysaccharide membrane. Flagella were bound to the purified lipopolysaccharide membrane specifically at the basal body ring closest to the hook (the L ring). The cytoplasmic membrane in preparations from osmotically lysed E. coli spheroplasts or Bacillus subtilis protoplasts was specifically attached to flagella at the basal body ring farthest from the hook (the M ring). In the E. coli preparation, lipopolysaccharide membrane was also present and was attached to the L ring. From these data and a knowledge of the structure and dimensions of the E. coli flagellar basal body and cell envelope, a model for flagellar attachment is deduced.  相似文献   

14.
DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA   总被引:19,自引:15,他引:4       下载免费PDF全文
Flagellates of Naegleria gruberi have an interconnected flagellar apparatus consisting of nucleus, rhizoplast and accessory filaments, basal bodies, and flagella. The structures of these components have been found to be similar to those in other flagellates. The development of methods for obtaining the relatively synchronous transformation of populations of Naegleria amebae into flagellates has permitted a study of the development of the flagellar apparatus. No indications of rhizoplast, basal body, or flagellum structures could be detected in amebae. A basal body appears and assumes a position at the cell surface with its filaments perpendicular to the cell membrane. Axoneme filaments extend from the basal body filaments into a progressive evagination of the cell membrane which becomes the flagellum sheath. Continued elongation of the axoneme filaments leads to differentiation of a fully formed flagellum with a typical "9 + 2" organization, within 10 min after the appearance of basal bodies.  相似文献   

15.
The intact flagella of Wolinella succinogenes, a gram-negative, anaerobic bacterium with a single polar flagellum, were obtained by an improved procedure, introduced recently by Aizawa et al. (S.-J. Aizawa, G. E. Dean, C. J. Jones, R. M. Macnab, and S. Yamaguchi, J. Bacteriol. 161:836-849, 1985) for the flagellum of Salmonella typhimurium. Disks with a diameter of 130 +/- 30 nm, which were attached to the basal body of the isolated intact flagella, could be identified by electron microscopy as additional structural elements of the bacterial flagellar apparatus. In freeze-dried and metal-shadowed samples, two rings of the basal body were detected on one side and a terminal knob was located on the other side of the disks. Suspension of the flagellar apparatus in acidic solution dissociated the flagellar filaments, yielding hook-basal body complexes with and without the associated disks. If whole cells were subjected to low pH, double disks of the same diameter and with a central hole of about 13 nm could be isolated. Similar parallel disks could be seen also in negatively stained whole cells. When uranyl acetate was used for negative staining of the intact flagella, concentric rings were detected on the disks, similar to the concentric membrane rings found by Coulton and Murray (J. W. Coulton and R. G. E. Murray, J. Bacteriol. 136:1037-1049, 1978) on platelike arrays of proteins in outer membrane preparations of Aquaspirillum serpens. Because the disks of W. succinogenes can be isolated together with the flagellar hook-basal body complex, they appear to be basal-body-rather than secondary membrane-associated structures. It is possible that these disks are the bearing or stator of this rotary device.  相似文献   

16.
Cells of Pseudomonas rhodos 9-6 produce two morphologically distinct flagella termed plain and complex, respectively. Fine structure analyses by electron microscopy and optical diffraction showed that plain flagellar filaments are cylinders of 13-nm diameter composed of globular subunits like normal bacterial flagella. The structure comprises nine large-scale helical rows of subunits intersecting four small-scale helices of pitch angle 25 degrees . Complex filaments have a conspicuous helical sheath, 18-nm wide, of three close-fitting helical bands, each about 4.7-nm wide, separated by axial intervals, 4.7 nm wide, running at an angle of 27 degrees . The internal core has similar but not identical substructure to plain filaments. Unlike plain flagella, the complex species is fragile and does not aggregate in bundles. Mutants bearing only one of two types of flagellum were isolated. Cells with plain flagella showed normal translational motion, and cells with complex flagella showed rapid spinning. Isolated plain flagella consist of a 37,000-dalton subunit separable into two isoproteins. Complex filaments consist of a 55,000-dalton protein; a second 43,000-dalton protein was assigned to complex flagellar hooks. The results indicate that plain and complex flagella are entirely different in structure and composition and that the complex type represents a novel flagellar species. Its possible mode of action is discussed.  相似文献   

17.
The periplasmic flagella of Spirochaeta aurantia were isolated and were found to be ultrastructurally and biochemically complex. Generally, flagellar filaments were 18 to 20 nm in diameter and appeared to consist of an 11 to 13-nm-wide inner region and an outer layer. The hook-basal body region consisted of two closely apposed disks connected to a hook by a rod. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified flagella together with a Western blot analysis of a motility mutant that produces hooks and basal bodies but not flagellar filaments revealed that the filaments were composed of three major polypeptides of 37,500, 34,000, and 31,500 apparent molecular weight (37.5K, 34K, and 31.5K polypeptides) and three minor polypeptides of 36,000, 33,000, and 32,000 apparent molecular weight (36K, 33K, and 32K polypeptides). Purified hook-basal body preparations were greatly enriched in three polypeptides in the range of 62,000 to 66,000 apparent molecular weight. Immunogold labeling experiments with a monoclonal antibody specific for the 37.5K flagellin and one that reacts with an epitope common to the 36K, 34K, 33K, 32K, and 31.5K flagellins revealed that the 37.5K major polypeptide was a component of the outer layer, whereas one or more of the other polypeptides constituted the core.  相似文献   

18.
The flagella of Methanococcus voltae were isolated by using three procedures. Initially, cells were sheared to release the filaments, which were purified by differential centrifugation and banding in KBr gradients. Flagella were also prepared by solubilization of cells with 1% (vol/vol) Triton X-100 and purified as described above. Both of these techniques resulted in variable recovery and poor yield of flagellar filaments. Purification of intact flagella (filament, hook, and basal body) was achieved by using phase transition separation with Triton X-114. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified flagella revealed two major proteins, with molecular weights of 33,000 and 31,000. This result indicates the likely presence of two flagellins. The filament had a diameter of 13 nm. The basal structure consisted of a small knob, while a slight thickening of the filament immediately adjacent to this area was the only evidence of a hook region. Flagella from three other Methanococcus species were isolated by this technique and found to have the same ultrastructure as flagella from M. voltae. Isolation of flagella from three eubacteria and another methanogen (Methanospirillum hungatei [M. hungatii]) by the phase separation technique indicated that the detergent treatment did not affect the structure of basal bodies. Intact ring structures and well-differentiated hook regions were apparent in each of these flagellar preparations.  相似文献   

19.
In this work, we analyzed motility and the flagellar systems of the marine bacterium Vibrio shilonii. We show that this bacterium produces lateral flagella when seeded on soft agar plates at concentrations of 0.5% or 0.6%. However, at agar concentrations of 0.7%, cells become round and lose their flagella. The sodium channel blocker amiloride inhibits swimming of V. shilonii with the sheathed polar flagellum, but not swarming with lateral flagella. We also isolated and characterized the filament–hook–basal body of the polar flagellum. The proteins in this structure were analyzed by MS. Eight internal sequences matched with known flagellar proteins. The comparison of these sequences with the protein database from the complete genome of V. shilonii allows us to conclude that some components of the polar flagellum are encoded in two different clusters of flagellar genes, suggesting that this bacterium has a complex flagellar system, more complex possibly than other Vibrio species reported so far.  相似文献   

20.
Flagellar development in the plurilocular zoidangia of sporophytes of the brown alga Ectocarpus siliculosus was analyzed in detail using transmission electron microscopy and electron tomography. A series of cell divisions in the plurilocular zoidangia produced the spore-mother cells. In these cells, the centrioles differentiated into flagellar basal bodies with basal plates at their distal ends and attached to the plasma membrane. The plasma membrane formed a depression (flagellar pocket) into where the flagella elongated and in which variously sized vesicles and cytoplasmic fragments accumulated. The anterior and posterior flagella started elongating simultaneously, and the vesicles and cytoplasmic fragments in the flagellar pocket fused to the flagellar membranes. The two flagella (anterior and posterior) could be clearly distinguished from each other at the initial stage of their development by differences in length, diameter and the appendage flagellar rootlets. Flagella continued to elongate in the flagellar pocket and maintained their mutually parallel arrangement as the flagellar pocket gradually changed position. In mature zoids, the basal part of the posterior flagellum (paraflagellar body) characteristically became swollen and faced the eyespot region. Electron dense materials accumulated between the axoneme and the flagellar membrane, and crystallized materials could also be observed in the swollen region. Before liberation of the zoospores from the plurilocular zoidangia, mastigoneme attachment was restricted to the distal region of the anterior flagellum. Structures just below the flagellar membrane that connected to the mastigonemes were clearly visible by electron tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号