首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of collagen biosynthesis regulation is not fully understood. The finding that prolidase plays an important role in collagen biosynthesis and phosphoenolpyruvate inhibits prolidase activity "in vitro" led to evaluate its effect on collagen biosynthesis in cultured human skin fibroblasts. Confluent fibroblasts were treated with millimolar concentrations (1-4 mM) of phosphoenolpyruvate monopotassium salt (PEP) for 24 h. It was found that PEP-dependent decrease in prolidase activity and expression was accompanied by parallel decrease in collagen biosynthesis. However, the experiments with inhibitor of PEP production, 3-mercaptopicolinate revealed no direct correlation between collagen biosynthesis and prolidase activity and expression. Since insulin-like growth factor (IGF-I) is the most potent stimulator of both collagen biosynthesis and prolidase activity, and prolidase is regulated by beta(1) integrin signaling, the effect of PEP on IGF-I receptor (IGF-IR) and beta(1) integrin receptor expressions were evaluated. It was found that the exposure of the cells to 4 mM PEP contributed to a decrease in IGF-IR and beta(1) integrin receptor expressions. The data suggest that PEP-dependent decrease of collagen biosynthesis in cultured human skin fibroblasts may undergo through depression of alpha(2)beta(1) integrin and IGF-IR signaling. The hypothetical mechanism of the role of prolidase in IGF-IR, beta(1) integrin receptor expressions, and clinical significance of the process are discussed.  相似文献   

2.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen biosynthesis and prolidase activity in connective tissue cells. The disturbances in skin collagen metabolism (reflected by significant decrease in skin collagen content, collagen biosynthesis and prolidase activity) in fasted rats were accompanied by decrease in serum IGF-I level. Fasted rat serum was found to contain about 58% of IGF-I (101.6 +/- 15.4 ng/ml) as compared to control rat serum (175.7 +/- 19.8 ng/ml), while the skin of control and fasted rats contained similar concentrations of IGF-I (about 77 ng/g tissue). The insulin-like growth factor binding proteins (IGFBPs) of sera and tissue extracts (known to regulate IGF-I activity) were analysed by ligand blotting. In the serum of control rats one IGFBP band of about 46 kDa (corresponding to the acid-dissociated IGFBP-3) was detected. In the serum of fasted rats the 46 kDa IGFBP was not observed, however, an other IGFBP of about 30 kDa (corresponding to low molecular weight IGFBPs, e.g. IGFBP-1 or IGFBP-2) was found. The intensity of IGF-I binding to the 30 kDa IGFBP was much higher than that of IGFBP-3, found in control rat serum. Control and fasted rat skin contained similar IGFBPs, however their IGF-I binding abilities were much lower, compared to their serum counterparts. It was found that 46 kDa and 30 kDa proteins, observed in ligand blotting represent IGFBP-3 and IGFBP-1 or IGFBP-2. respectively as demonstrated by western immunoblot analysis. An increase in IGF-binding to 30 kDa IGFBP-1 and/or IGFBP-2 (known as an inhibitors of IGF-dependent functions) in the skin of fasted rats may explain the mechanism of reduced collagen biosynthesis and deposition in tissues during fasting.  相似文献   

3.
4.
It is known that various drugs form complexes with melanins and that melanins are abundant constituents of the inner ear. In this study, we determined whether the aminoglycoside antibiotic, netilmicin, interacts with melanin and how this process affects collagen biosynthesis in cultured human skin fibroblasts. The obtained results indicate that netilmicin forms stable complexes with melanin characterized by the association constants K1  106 M−1 and K2  103 M−1. We have suggested that prolidase, an enzyme involved in collagen metabolism, may be one of the targets for aminoglycoside-induced inhibition of collagen biosynthesis. We found that netilmicin strongly induced inhibition of prolidase activity (IC50 < 5 μM) and collagen biosynthesis (IC50  10 μM). At 10 μM concentration of netilmicin, prolidase activity in human skin fibroblasts was inhibited by about 80% and DNA biosynthesis—only by about 25%. Melanin at 100 μg/mL produced about 30% inhibition of collagen biosynthesis and about 30% inhibition of prolidase activity in cultured fibroblasts. However, the addition of melanin (100 μg/mL) to netilmicin-treated cells (10 μM) restored the prolidase activity in fibroblasts to almost 100% of control values and partially reversed the inhibitory action of the drug on collagen and DNA biosynthesis. The data suggest that the ability of netilmicin to form stable complexes with melanin may prevent its toxicity on prolidase activity and collagen biosynthesis.  相似文献   

5.
Prolidase [EC 3.4.13.9] is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline-containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. Although, the increase in the enzyme activity is correlated with increased rate of collagen turnover, the mechanism by which prolidase is regulated remain largely unknown. In the present study we found that phosphorylation of fibroblast's prolidase may be an underlying mechanism for up regulation of the enzyme activity. Supporting evidence comes from the following observations: (1) immunoprecipitated prolidase was detected as a phosphotyrosine protein as shown by western immunoblot analysis, (2) tyrosine kinase inhibitor – erbstatin induced (in a dose dependent manner) a decrease in prolidase activity in cultured human skin fibroblasts, (3) anti-phosphotyrosine antibody reduced and phosphotyrosine phosphatase 1B antibody (anti-PTP 1B) increased (in a dose dependent manner) the prolidase activity in extract of fibroblast's homogenate, (4) decrease in prolidase activity from collagenase treated or serum starved fibroblasts can be partially prevented by incubating fibroblast's homogenate extract with anti-PTP 1B antibody. These results provide evidence that prolidase is phosphotyrosine enzyme and suggest that the activity of prolidase may be up regulated by the enzyme phosphorylation.  相似文献   

6.
7.
Although betulinic acid (BA) is known to induce apoptosis and antiangiogenic response in tumor cells, the underlying mechanism of its action is unknown. Deregulation of tissue collagen metabolism is one of the consequences of neoplastic transformation. The final step of collagen degradation is mediated by prolidase [E.C.3.4.13.9] which may play a role in angiogenesis. The formation of new blood vessels is regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of vascular endothelial cell growth factor (VEGF). Since BA evokes anticancer activity, its effect on collagen biosynthesis, HIF-1α and VEGF expressions, as well as prolidase activity and expression was studied in cultured endometrial adenocarcinoma (EA) cells. It was found that BA inhibits collagen biosynthesis in EA cells (5[3H] proline incorporation assay). It was accompanied by a parallel decrease in prolidase activity and expression and decrease in expressions of α1 and α2 integrins, HIF-1α, and VEGF (western immunoblot analysis) in cultured human EA cells. The data suggest that BA may have anti-angiogenic potential by inhibition of prolidase, HIF-1α and VEGF expressions, and inhibition of collagen biosynthesis.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen and glycosaminoglycan (GAG) biosynthesis in tissues. IGF-I activity is modulated by a family of IGF-binding proteins (IGFBPs) with different IGF-I binding affinities. At least IGFBP-1 and IGFBP-2 are known as inhibitors of IGF functions. Some IGFBPs (IGFBP-1, IGFBP-3 and IGFBP-5) may undergo phosphorylation that dramatically increase their affinity for IGF. During fasting of animals there is a significant decrease of the collagen and GAG content of the skin, accompanied by a reduction of plasma IGF-I levels. However, in previous studies we showed that in the skin of fasted rats IGF-I as well as IGFBP-1 and IGFBP-2 expressions were not different, compared to control rat skin, although collagen content was significantly decreased. In the present study we show that fasted rat skin contains similar amounts of IGF-I, IGFBP-3 and IGFBP-1, although extract from fasted rat skin induced inhibition of collagen biosynthesis in cultured fibroblasts, compared to control rat skin extract. Western immunoblot analysis of control and fasted rat skin extracts, using anti-phosphoserine antibodies for immunoprecipitated IGFBP-1 and IGFBP-3, revealed that both proteins are present in phosphorylated form. Although no differences were found in the expression of phosphorylated IGFBP-3 between control and fasted rat skins, that of phosphorylated IGFBP-1 in fasted rat skin extract was higher than in control one. We suggest that there is an increased level of IGFBP-1 phosphoisoform in fasted rat skin, associated with increased affinity for IGF-I. The increase of phosphorylated IGFBP-1 in fasted rat skin tissue may augment IGF-I binding affinity for IGF and decrease its bioavailability for receptor interaction. This mechanism may prevent IGF-I dependent stimulation of fibroblasts to produce extracellular matrix components. The specific expression of IGFBPs and their phosphoisoforms in tissues may play an important role in regulation of IGF-I action during physiologic and pathologic responses.  相似文献   

9.
Although glutamine (Gln) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Intermediates of Gln interconversion: glutamate (Glu) and pyrroline-5-carboxylate (P5C) stimulate collagen biosynthesis in cultured cells but evoke different maxima of collagen biosynthesis stimulating activity at different times of incubation. P5C was found to be the most potent stimulator of collagen biosynthesis after 6 h of incubation (approx. three-fold increase); after 12 h, it induced increase in collagen biosynthesis to 260%, while at 24 h, the process was decreased to approximately 80% of control values. Glu induced increase in collagen biosynthesis to approximately 180%, 400% and 120% of control values, after 6, 12 and 24 h, respectively, suggesting that after 12 h of incubation, Glu was the most potent stimulator of collagen biosynthesis. Glu was also the most potent stimulator of type I procollagen expression at this time. After 6, 12 and 24 h incubation, Gln induced collagen biosynthesis to approximately 112, 115 and 230% of control values, respectively. Since prolidase is known to be involved in collagen metabolism, the enzyme activity assay was performed in fibroblasts cultured in the presence of Gln, Glu and P5C. While Gln and Glu required 24 h for maximal stimulation of prolidase activity, P5C induced it after 6-12 h. The data suggest that P5C induced collagen biosynthesis and prolidase activity in a shorter time than Gln and Glu. We considered that P5C directly stimulates the processes, while Gln acts through its intermediate-P5C. Reduction of P5C to proline is coupled to the conversion of glucose-6-phosphate (G6P) to 6-phospho-gluconate, catalyzed by G6P dehydrogenase. We have found that dehydroepiandrosterone (DHEA), a potent inhibitor of G6P dehydrogenase, inhibited a stimulatory effect of P5C on collagen synthesis, expression of type I collagen and prolidase activity. Our results postulate a potential mechanism of glutamine-induced collagen biosynthesis through its intermediate - P5C. P5C-dependent activation of nucleotide biosynthesis, prolidase activity and P5C conversion into proline may contribute to the stimulation of collagen biosynthesis.  相似文献   

10.
The main mechanism causing catabolite repression in Escherichia coli is the dephosphorylation of enzyme IIAGlc, one of the enzymes of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS is involved in the uptake of a large number of carbohydrates that are phosphorylated during transport, phosphoenolpyruvate (PEP) being the phosphoryl donor. Dephosphorylation of enzyme IIAGlc causes inhibition of uptake of a number of non-PTS carbon sources, a process called inducer exclusion. In this paper, we show that dephosphorylation of enzyme IIAGlc is not only caused by the transport of PTS carbohydrates, as has always been thought, and that an additional mechanism causing dephosphorylation exists. Direct monitoring of the phosphorylation state of enzyme IIAGlc also showed that many carbohydrates that are not transported by the PTS caused dephosphorylation during growth. In the case of glucose 6-phosphate, it was shown that transport and the first metabolic step are not involved in the dephosphorylation of enzyme IIAGlc, but that later steps in the glycolysis are essential. Evidence is provided that the [PEP]–[pyruvate] ratio, the driving force for the phosphorylation of the PTS proteins, determines the phosphorylation state of enzyme IIAGlc. The implications of these new findings for our view on catabolite repression and inducer exclusion are discussed.  相似文献   

11.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

12.
13.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

14.
Regulation of soybean nodule phosphoenolpyruvate carboxylase in vivo   总被引:4,自引:0,他引:4  
The sensitivity of soybean ( Glycine max L. Merr, cv. PS47) nodule phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) to inhibition by L-malate in vitro increased when well-nodulated plants were subjected to decapitation (shoot removal). There was no effect of decapitation on the apparent Km of the enzyme for its substrate PEP but the I50 (L-malate) decreased from 4.2 to 1.7 m M. The total amount of PEP doubled and that of malate decreased by half in the nodules of decapitated plants relative to the control plants. This observation was consistent with a decrease in the activity of PEPC in vivo as a result of the increased malate sensitivity of the enzyme observed in vitro. Sucrose levels in the nodules declined in response to decapitation but there were no effects on the levels of glucose, fructose, pyruvate, 2-oxoglutarate, glutamine or glutamate. The results are discussed in terms of the role of protein phosphorylation in the regulation of PEPC activity in legume nodules.  相似文献   

15.
Prolidase [E.C. 3.4.13.9] plays an important role in the recycling of proline for collagen synthesis and cell growth and this enzyme activity determines the rate of collagen turnover. It has been previously suggested that prolidase activity is regulated through signal mediated by the interaction of ECM proteins, with b1 integrin receptor and that this interaction is disturbed in MCF-7 cells. The potential candidates for mediating signal transduction are the nonreceptor tyrosine kinase p125FAK and two mitogen-activated protein (MAP) kinases, ERK-1 and ERK-2, which are activated upon attachment of cells to ECM. We found that serum starvation of MCF-7 cells for 24 hours contributed to a significant decrease (by about 30%) in prolidase activity and collagen biosynthesis. These phenomena were accompanied by suppression of MAP kinases expression without any effect on the expression of FAK. The data suggest that prolidase activity and collagen biosynthesis respond to signal mediated by MAP kinases, independently of FAK expression in MCF-7 cells.  相似文献   

16.
Fifteen-fold overexpression of phosphoenolpyruvate synthase (Pps) (EC 2.7.9.2) in Escherichia coli stimulated oxygen consumption in glucose minimal medium. A further increase in Pps overexpression to 30-fold stimulated glucose consumption by approximately 2-fold and resulted in an increased excretion of pyruvate and acetate. Insertion of two codons at the PvuII site in the pps gene abolished the enzymatic activity and eliminated the above-described effects. Both the active and the inactive proteins were detected at the predicted molecular weight by polyacrylamide gel electrophoresis. Therefore, the observed physiological changes were due to the activity of Pps. The higher specific rates of consumption of oxygen and glucose indicate a potential futile cycle between phosphoenolpyruvate (PEP) and pyruvate. A model for the stimulation of glucose uptake is presented; it involves an increased PEP/pyruvate ratio caused by the overexpressed Pps activity, leading to a stimulation of the PEP:sugar phosphotransferase system.  相似文献   

17.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

18.
Nematodes which have adapted to an anaerobic lifestyle in their adult stages oxidise phosphoenolpyruvate (PEP) to oxaloacetate rather than pyruvate as the final product of glycolysis. This adaptation involves selective expression of the enzyme phosphoenolpyruvate carboxykinase (PEPCK), instead of pyruvate kinase (PK). However, such adaptation is not absolute in aerobic nematode species. We have examined the activity and kinetics of PEPCK and PK in larvae (L3) and adults of Teladorsagia circumcincta, a parasite known to exhibit oxygen uptake. Results revealed that PK and PEPCK activity existed in both L3s and adults. The enzymes had differing affinity for nucleotide diphosphates: while both can utilise GDP, only PK utilised ADP and only PEPCK utilised IDP. In both life cycle stages, enzymes showed similar affinity for PEP. PK activity was predominant in both stages, although activity of this enzyme was lower in adults. When combined, both the activity levels and the enzyme kinetics showed that pyruvate production is probably favoured in both L3 and adult stages of T. circumcincta and suggest that metabolism of PEP to oxaloacetate is a minor metabolic pathway in this species.  相似文献   

19.
Although insulin-like growth factor-I (IGF-I) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Serum of acutely fasted rats contained reduced amount of IGF-I (72+/-16 ng/ml) and showed about 75% reduced ability to stimulate collagen and DNA synthesis in confluent human skin fibroblasts in comparison to the effect of control rat serum (IGF-I, 168+/-19 ng/ml). An addition of IGF-I (at least 40 ng/ml) to fasted rat serum restored its mitogenic activity but could not restore its ability to stimulate collagen biosynthesis to control values during 24 h of incubation. However, when the cells were incubated in fasted rat serum supplemented with 40 ng/ml of IGF-I for 48 h, collagen biosynthesis was restored to control values. It suggests that the stimulatory role of IGF-I in collagen biosynthesis undergo indirectly. We considered pyrroline-5-carboxylate (P5C) as a candidate to play a direct role in this process. Since IGF-I and P5C are known to be decreased in serum of fasted rats it seems that the action of IGF-I on collagen biosynthesis may involve participation of P5C. We have found that serum of fasted rats (showing low level of P5C) supplemented with 1 mmol/l P5C induced collagen biosynthesis in confluent human skin fibroblasts during 24 h to control values. Supporting evidence comes from the experiment showing stimulatory action of P5C on collagen biosynthesis in fibroblasts cultured in serum-free medium. Our results postulate potential role of P5C in regulation of collagen biosynthesis and indicate participation of this molecule in the pathway of IGF-I action in this process.  相似文献   

20.
The enzyme responsible for the direct phosphorylation of pyruvate during gluconeogenesis in Acetobacter xylinum has been purified 46-fold from ultrasonic extracts and freed from interfering enzyme activities. The enzyme was shown to catalyze the reversible Mg(2+) ion-dependent conversion of equimolar amounts of pyruvate, adenosine triphosphate (ATP), and orthophosphate (P(i)) into phosphoenolpyruvate (PEP), adenosine monophosphate (AMP), and pyrophosphate (PP). The optimal pH for PEP synthesis was pH 8.2; for the reversal it was pH 6.5. The ratio between the initial rates of the reaction in the forward and reverse directions was 5.1 at pH 8.2 and 0.45 at pH 6.5. The apparent K(m) values of the components of the system in the forward reaction were: pyruvate, 0.2 mm; ATP, 0.4 mm; P(i), 0.8 mm; Mg(2+), 2.2 mm; and for the reverse reaction: PEP, 0.1 mm; AMP, 1.6 mum; PP, 0.067 mm; Mg(2+), 0.87 mm. PEP formation was inhibited by AMP and PP. The inhibition by AMP was competitive with regard to ATP (K(i) = 0.2 mm). The reverse reaction was inhibited competitively by ATP and noncompetitively by pyruvate. The enzyme was strongly inhibited by p-hydroxymercuribenzoate. The inhibition was reversed by dithiothreitol and glutathione. The properties of the enzyme are discussed in relation to the regulation of the opposing enzymatic activities involved in the interconversion of PEP and pyruvate in A. xylinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号