首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Intracranial hypertension is a severe therapeutic problem, as there is insufficient knowledge about the physiology of cerebrospinal fluid (CSF) pressure. In this paper a new CSF pressure regulation hypothesis is proposed. According to this hypothesis, the CSF pressure depends on the laws of fluid mechanics and on the anatomical characteristics inside the cranial and spinal space, and not, as is today generally believed, on CSF secretion, circulation and absorption. The volume and pressure changes in the newly developed CSF model, which by its anatomical dimensions and basic biophysical features imitates the craniospinal system in cats, are compared to those obtained on cats with and without the blockade of craniospinal communication in different body positions. During verticalization, a long-lasting occurrence of negative CSF pressure inside the cranium in animals with normal cranio-spinal communication was observed. CSF pressure gradients change depending on the body position, but those gradients do not enable unidirectional CSF circulation from the hypothetical site of secretion to the site of absorption in any of them. Thus, our results indicate the existence of new physiological/pathophysiological correlations between intracranial fluids, which opens up the possibility of new therapeutic approaches to intracranial hypertension.  相似文献   

2.
A correlation function of cardiac output and mean arterial pressure is presented for the human cardiovasular system. The function is developed using an energy transfer balance for a unit volume of blood which flows in the vascular system between the aorta and the vena cava. The energy transfer balance equates the energy utilized in the vascular system to the algebraic sum of the pulse energy, the kinetic energy and the potential energy in the vascular system. Each of these energies is defined in terms of the physiology of the cardiovascular system. Pulse energy is defined in terms of the work done by the heart on the aorta. Kinetic energy is defined in terms of the cardiac output and the potential energy is defined in terms of the diastolic pressure in the aorta. The utilization energy is equivalent to the energy transfer in the work done by the blood on the viscoelastic blood vessels, and to the frictional energy loss due to drag on the blood mass as it flows through the vascular system.The correlation function of cardiac output with mean arterial pressure demonstrates that the cardiac output is a double-valued function of the mean arterial pressure. The function also varies with the ratio of the fourth power of the Shear Modulus of the blood vessels to the third power of Young's Modulus. The function shows that mean arterial pressure minimizes for a cardiac output of approximately 51 per min when one holds the ratio of the elastic moduli constant. Further discussion indicates how clinicians can use the function, developed in this research, to interpret the experimental data obtained from cardiac output studies.  相似文献   

3.
The syndrome of neurogenic pulmonary edema raises the question of whether there are neurological influences on pulmonary vascular permeability. Previous experimental models commonly produced severe hemodynamic alterations, complicating the distinction of increased permeability from increased hydrostatic forces in the formation of the pulmonary edema. Accordingly, we employed a milder central nervous system insult and measured the pulmonary vascular protein extravasation rate, which is a sensitive and specific indicator of altered protein permeability. After elevating intracranial pressure via cisternal saline infusion in anesthetized dogs, we used a dual isotope method to measure the protein leak index. This elevated intracranial pressure resulted in a nearly three-fold rise in the protein leak index (54.1 +/- 7.5 vs. 20.2 +/- 0.9). This central nervous system insult was associated with only mild increases in pulmonary arterial pressures and cardiac output. However, when we reproduced these hemodynamic changes with left atrial balloon inflation or isoproterenol infusion, we observed no effect on the protein leak index compared with control. Although the pulmonary arterial wedge pressure with intracranial pressure remained <10 mmHg, increases in the extravascular lung water were demonstrated. The results suggest the existence of neurological influences on pulmonary vascular protein permeability. We conclude that neurological insults result in increase pulmonary vascular permeability to protein and subsequent edema formation, which could not be accounted for by hemodynamic changes alone.  相似文献   

4.
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation.  相似文献   

5.
Vascular and tissue fluid dynamics in the microgravity of space environments is commonly simulated by head-down tilt (HDT). Previous reports have indicated that intracranial pressure and extracranial vascular pressures increase during acute HDT and may cause cerebral edema. Tissue water changes within the cranium are detectable by T2 magnetic resonance imaging. We obtained T2 images of sagittal slices from five subjects while they were supine and during -13 degrees HDT using a 1.5-Tesla whole-body magnet. The analysis of difference images demonstrated that HDT leads to a 21% reduction of T2 in the subarachnoid cerebrospinal fluid (CSF) compartment and a 11% reduction in the eyes, which implies a reduction of water content; no increase in T2 was observed in other brain regions that have been associated with cerebral edema. These findings suggest that water leaves the CSF and ocular compartments by exudation as a result of increased transmural pressure causing water to leave the cranium via the spinal CSF compartment or the venous circulation.  相似文献   

6.
The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. L-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after L-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca(++) entry blocker isradipine also decreased pulmonary and systemic arterial pressure in L-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of L-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following L-NAME treatment are mediated by Rho kinase and Ca(++) entry through L-type channels, and that responses to L-NAME can be reversed by an NO donor.  相似文献   

7.
During mechanical ventilation, increased pulmonary vascular resistance (PVR) may decrease right ventricular (RV) performance. We hypothesized that volume loading, by reducing PVR, and, therefore, RV afterload, can limit this effect. Deep anesthesia was induced in 16 mongrel dogs (8 oleic acid-induced acute lung injury and 8 controls). We measured ventricular pressures, dimensions, and stroke volumes during positive end-expiratory pressures of 0, 6, 12, and 18 cmH(2)O at three left ventricular (LV) end-diastolic pressures (5, 12, and 18 mmHg). Oleic acid infusion (0.07 ml/kg) increased PVR and reduced respiratory system compliance (P < 0.05). With positive end-expiratory pressure, PVR was greater at a lower LV end-diastolic pressure. Increased PVR was associated with a decreased transseptal pressure gradient, suggesting that leftward septal shift contributed to decreased LV preload, in addition to that caused by external constraint. Volume loading reduced PVR; this was associated with improved RV output and an increased transseptal pressure gradient, which suggests that rightward septal shift contributed to the increased LV preload. If PVR is used to reflect RV afterload, volume loading appeared to reduce PVR, thereby improving RV and LV performance. The improvement in cardiac output was also associated with reduced external constraint to LV filling; since calculated PVR is inversely related to cardiac output, increased LV output would reduce PVR. In conclusion, our results, which suggest that PVR is an independent determinant of cardiac performance, but is also dependent on cardiac output, improve our understanding of the hemodynamic effects of volume loading in acute lung injury.  相似文献   

8.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

9.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

10.
We study the impact of vascular pulse in the cerebrospinal fluid (CSF) pressure measured on the lateral cerebral ventricles, as well as its sensitivity with respect to ventricular volume change. Recent studies have addressed the importance of the compliance capacity in the brain and its relation to arterial pulse abortion in communicating hydrocephalus. Nevertheless, this mechanism is not fully understood. We propose a fluid-structure interaction (FSI) model on a 3?D idealized geometry based on realistic physiological and morphological parameters. The computational model describes the pulsatile deformation of the third ventricle due to arterial pulse and the resulting CSF dynamics inside brain pathways. The results show that when the volume of lateral ventricles increases up to 3.5 times, the amplitudes of both average and maximum pressure values, computed on the lateral ventricles surface, substantially decrease. This indicates that the lateral ventricles expansion leads to a dumping effect on the pressure exerted on the walls of the ventricles. These results strengthen the possibility that communicant hydrocephalus may, in fact, be a natural response to reduce abnormal high intracranial pressure (ICP) amplitude. This conclusion is in accordance with recent hypotheses suggesting that communicant hydrocephalus is related to a disequilibrium in brain compliance capacity.  相似文献   

11.
Hemodynamic effects of anti-G suit inflation in a 1-G environment   总被引:1,自引:0,他引:1  
This study evaluated effects of various anti-G inflation pressures on cardiac volumes and the relationship of these volume changes to mean arterial pressure changes. Ventricular volumes were calculated using two-dimensional echocardiography. An anti-G suit was inflated to 2, 4, and 6 psi in the standing and supine positions for 10 male subjects. In the supine position, mean arterial pressure increased from base line for all three inflation pressures (P = 0.05). The end-diastolic volume increased after 2-psi inflation (P = 0.03). Cardiac output or stroke volume did not change. After standing, mean arterial pressure (P = 0.002), end-diastolic volume (P = 0.002), and stroke volume (P = 0.05) fell after suit deflation. Peripheral vascular resistance fell in the 2- and 4-psi inflation profiles. In the standing protocol, mean arterial pressure, end-diastolic volume, stroke volume, and cardiac output rose with all three inflation pressures (P less than 0.05). After reclining, heart rate increased (P = 0.02) and mean arterial pressure fell (P less than 0.05) in the 4- and 6-psi inflation profiles after suit deflation. Increases in mean arterial pressure are caused by increases in cardiac preload and cardiac output after inflation of the anti-G suit while subjects were standing. Increased cardiac preload was not consistently seen after inflation while subjects were supine. Changes in end-diastolic volume and mean arterial pressure were dependent on the pressure used to inflate the anti-G suit.  相似文献   

12.
Five chronically instrumented healthy dogs were exposed to a 5-day period of breathing 10% oxygen in a chamber. The response to hypoxia was found to be time dependent. During the first 24 h of hypoxia the circulatory response was characterized by increases in cardiac output, heart rate, pulmonary and systemic arterial blood pressures, and pulmonary vascular resistance. Systemic vascular resistance increased; left atrial pressure decreased. During the early part of hypoxia the animals became hypocapnic; the arterial blood pH rose significantly. During the rest of the hypoxic period cardiac output, heart rate, and arterial blood pH returned to the control values; pulmonary and systemic arterial pressures and pulmonary vascular resistance remained significantly elevated. Systemic vascular resistance rose; left atrial pressure remained below control. This response to hypoxia was not substantially modified when the experiment was repeated during the administration of the antihistamine promethazine, an H1-receptor blocking agent, in a dose which blocked the pulmonary vasoconstrictor response to small doses of exogenous histamine. The circulatory response to acute hypoxia in five anesthetized dogs was not modified by intravenous administration of metiamide, an H2-receptor blocking agent.  相似文献   

13.
The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. For this purpose, a mathematical approach based on a lumped parameter model was developed to model the BDG circulation. Catheterization data from 39 BDG patients at stabilized oxygen conditions was used to determine baseline flows and pressures for the model. The effect of high altitude exposure was modeled by increasing the pulmonary vascular resistance (PVR) and heart rate (HR) in increments up to 80% and 40%, respectively. The resulting differences in vascular flows, pressures and ventricular function parameters were analyzed. By simultaneously increasing PVR and HR, significant changes (p <0.05) were observed in cardiac index (11% increase at an 80% PVR and 40% HR increase) and pulmonary flow (26% decrease at an 80% PVR and 40% HR increase). Significant increase in mean systemic pressure (9%) was observed at 80% PVR (40% HR) increase. The results show that the poor ventricular function fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments.  相似文献   

14.
A computer model is described that simulates the cardiac cycle of a mammalian heart. The model emphasizes the pressure-volume plot as a teaching tool to explain the behavior of the heart as a pump. It exhibits realistic responses to changes in preload, afterload, contractility, and heart rate while displaying time-dependent changes in pressure and volume in addition to the pressure versus volume plot. It differs from previous models by graphing these parameters on a beat-to-beat basis, allowing visualization of the dynamic adaptation of the pumping heart to various stimuli. A system diagram is also included to further promote student understanding of the physiology of cardiac function. The model is useful for teaching this topic to medical, graduate, or undergraduate students. It may also be used as a self-directed computer laboratory exercise.  相似文献   

15.
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.  相似文献   

16.
ABSTRACT: BACKGROUND: The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. METHODS: A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. RESULTS: The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. CONCLUSIONS: A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.  相似文献   

17.
A modified anterogradely perfused rat heart preparation is described in which all the cardiac output passes through the coronary circulation. Such a preparation develops hypertensive aortic pressures. Hypertensive aortic pressures or insulin stimulate the rate of cardiac protein synthesis and inhibit the rate of protein degradation. Aortic pressure and insulin may be important in the regulation of cardiac nitrogen balance in vivo. By abolishing cardiac prostaglandin synthesis with 4-biphenylacetate, we were able to investigate the possible involvement of prostaglandins in the modulation of protein turnover by pressure overload or insulin. There was no evidence of any involvement. However, insulin stimulated and cycloheximide inhibited cardiac prostaglandin synthesis. These findings are consonant with an enzyme involved in prostaglandin synthesis being short-lived and prostaglandin synthesis being rapidly influenced by activators and inhibitors of protein synthesis and degradation.  相似文献   

18.
To determine the interdependence of intracranial pressure (ICP) and intraocular pressure (IOP) and how it affects optic nerve pressures, eight normal dogs were examined using pressure-sensing probes implanted into the left ventricle, lumbar cistern, optic nerve subarachnoid space in the left eye, and anterior chamber in the left eye. This allowed ICP, lumbar cistern pressure (LCP), optic nerve subarachnoid space pressure (ONSP) and IOP to be simultaneously recorded. After establishing baseline pressure levels, pressure changes that resulted from lowering ICP (via shunting cerebrospinal fluid (CSF) from the ventricle) were recorded. At baseline, all examined pressures were different (ICP<LCP<ONSP), but correlated (P>0.001). As ICP was lowered during CSF shunting, IOP also dropped in a parallel time course so that the trans-lamina cribrosa gradient (TLPG) remained stable (ICP-IOP dependent zone). However, once ICP fell below a critical breakpoint, ICP and IOP became uncoupled and TLPG changed as ICP declined (ICP-IOP independent zone). The optic nerve pressure gradient (ONPG) and trans-optic nerve pressure gradient (TOPG) increased linearly as ICP decreased through both the ICP-IOP dependent and independent zones. We conclude that ICP and IOP are coupled in a specific pressure range, but when ICP drops below a critical point, IOP and ICP become uncoupled and TLPG increases. When ICP drops, a rise in the ONPG and TOPG creates more pressure and reduces CSF flow around the optic nerve. This change may play a role in the development and progression of various ophthalmic and neurological diseases, including glaucoma.  相似文献   

19.
20.
Effects of pneumatic antishock garment inflation in normovolemic subjects   总被引:1,自引:0,他引:1  
This study examines the effects of inflation of pneumatic antishock garments (PASG) in 10 normovolemic men (mean age 44 +/- 6 yr) undergoing diagnostic catheterization. Seven subjects had normal heart function and no evidence of coronary artery disease (CAD); three patients had CAD. High-fidelity multisensor catheters were employed to simultaneously record right and left heart pressures before PASG inflation and after inflation to 40, 70, and 100 mmHg. A thermal dilution catheter was used to obtain pulmonary capillary wedge pressure and cardiac output. Counterpressure increases greater than or equal to 40 mmHg were associated with significant changes in left and right heart pressures. Right and left ventricular end-diastolic pressures increased 100% (P less than 0.01); mean pulmonary arterial and aortic pressures increased 77 and 25%, respectively (P less than 0.01); systemic vascular resistance increased 22% (P less than 0.05) and pulmonary vascular resistance did not change in normal subjects at maximum PASG inflation. Heart rate, cardiac output, and aortic and pulmonary arterial pulse pressures did not change during inflation in either group. Right and left ventricular end-diastolic pressures and pulmonary capillary wedge pressure were greater (P less than 0.05) in the CAD group compared with the normal subjects during PASG inflation. The data suggest that the primary mechanism whereby PASG inflation induces changes in central hemodynamics in normovolemic subjects is through an acute increase in left ventricular afterload. PASG changes in afterload and pulmonary capillary wedge pressure imply that these devices should be used with caution in patients with compromised cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号