首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoprotein formation and heme reconstitution of cytochrome P-450cam   总被引:1,自引:0,他引:1  
Apoprotein suitable for heme reconstitution has been prepared by an acid/butanone extraction of cytochrome P-450cam at pH 2.5. Absorption spectra of apo-P-450cam indicate less than 2% residual holoenzyme. Four tryptophan residues per molecule were estimated from the aromatic absorbance region of denatured apoprotein. Heme-reconstituted holoprotein was purified in 30% yield to a specific activity equivalent to the native enzyme. Absorption and EPR spectra of 57Fe- and 54Fe-heme-enriched P-450cam reveal complete restoration of the native active site.  相似文献   

2.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

3.
Addition of nicotine to phenobarbital-inducible cytochrome P-450 caused a shift of maximum of Soret peak toward the red approximately 3 nm. The difference spectrum produced by nicotine showed a type 2 spectral change with a peak at 427 nm and a trough at 393 nm. A spectral dissociation constant of phenobarbital-inducible cytochrome P-450 was found to be 0.16 mM for nicotine. Nicotine oxidation in the reconstituted system depended on cytochrome P-450, NADPH-cytochrome P-450 reductase and NADPH. These results indicate that phenobarbital-inducible cytochrome P-450 participates in nicotine oxidation.  相似文献   

4.
5.
This paper is concerned with camphor-bound bacterial cytochrome P-450 and processes that alter its spin-state equilibrium and influence its transition to the nonactive form, cytochrome P-420, as well as its renaturation to the native camphor-bound cytochrome P-450. Spermine, a polycation carrying a charge of 4 +, and potassium, a monovalent cation, were shown to differently cause an increase of high-spin content of camphor-bound cytochrome P-450. The spermine-induced spin transition saturates around 75% of the high spin; a further addition of KCl to the spermine-containing sample shifted the spin state to 95% of the high spin. The volume change of these spin transitions as measured by the use of high pressure indicated an excess of -40 mL/mol for the sample containing potassium as compared to that containing spermine. These results suggest that the proposed privileged site for potassium has not been occupied by spermine and that pressure forces both the camphor and the potassium ion from its sites, allowing solvent movement into the protein as well as ordering of solvent by the excluded camphor and potassium. Cytochrome P-420 was produced from cytochrome P-450 by hydrostatic pressure in the presence of potassium, spermine, and cysteine. Potassium cation shows a bigger effect on the stability of cytochrome P-450 than spermine or cysteine, as revealed by a higher value of the pressure of half-inactivation, P1/2, and a bigger inactivation volume change. However, potassium cation did not promote renaturation of cytochrome P-420 to cytochrome P-450 while the presence of spermine did.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The role of heme in the formation of cytochrome P-450 native structure was investigated. It was shown that treatment of purified and membrane-bound hemoproteins with H2O2 results in the total destruction of heme. After incubation with hemine the apoprotein thus obtained forms a catalytically active cytochrome P-450. The efficiency of this process depends on the enzyme microenvironment. The membrane-bound apoprotein may be reconstituted by 70-80%, whereas the soluble one--by 50%. It is concluded that the observed differences may be accounted for by a greater stability of the membrane-bound protein structure.  相似文献   

7.
8.
Liver cytochrome P-450 from rats treated intraperitoneally with troleandomycin (TAO) were solubilized and partially purified using DE 52 anion exchange chromatography. The major TAO-induced cytochrome P-450 form appears in fraction A which is not bound on the DE 52 column. It is different from the major form induced in rats by phenobarbital or 3-methylcholanthrene in terms of absolute visible spectroscopy, gel electrophoresis (M 45000) and reactions with antibodies. This TAO-induced form mainly exists in vivo as an iron-TAO metabolite complex and exhibits a characteristic Soret peak at 456 nm. Reconstitution experiments using this partially purified form, after dissociation of its iron-metabolite bond by ferricyanide treatment, underline its particular ability to demethylate TAO itself. TAO also leads to an important induction of other cytochromes P-450 that are present in fraction B (retained on DE 52 column) like the major phenobarbital-induced form, but are immunologically distinct from it.  相似文献   

9.
Spin state changes in the iron center of cytochrome P-450 during the catalytic cycle suggest alterations in the heme environment that insure proper substrate binding, an increase in redox potential, the formation of an active Fe-O complex, and the attack on the substrate. We used the spin state changes of the iron following physico-chemical perturbations, as an intrinsic probe of discrete changes around the heme, or of larger ones in the protein conformation. These environmental perturbations included temperature, solvent, substrate, and ionic environment. Aqueous and hydro-organic buffers provide complementary data and interpretations; the mixed solvent accommodates temperatures suitable for direct reaction rate measurements and amplified low to high spin transition. The results suggest that the group determining the heme spin state is influenced by the electrostatic potential created by several negative charges near the heme; the modulation of the spin state by various factors reflects the modulation of the electrostatic potential and of the internal paH value. Conformational changes of the whole protein are also indicated by the large entropy terms and their variation with experimental conditions.  相似文献   

10.
Previous studies demonstrated that liver microsomes from untreated rats catalyze the omega, omega-1, and omega-2 hydroxylation of prostaglandins [K. A. Holm, R. J. Engell, and D. Kupfer (1985) Arch. Biochem. Biophys. 237, 477-489]. The current study examined the regioselectivity of hydroxylation of PGE1 and PGE2 by purified forms of P-450 from untreated male and female rat liver microsomes. PGE1 was incubated with a reconstituted system containing cytochrome P-450 RLM 2, 3, 5, 5a, 5b, 6, or f4, NADPH-P-450 reductase, and dilauroylphosphatidylcholine in the presence or absence of cytochrome b5. Among the P-450 forms examined, only RLM 5 (male specific), 5a (present in both sexes), and f4 (female specific) yielded high levels of PGE hydroxylation. With PGE1, RLM 5 catalyzed solely the omega-1 hydroxylation and 5a catalyzed primarily the omega-1 and little omega and omega-2 hydroxylation. By contrast, f4 effectively hydroxylated PGE1 and PGE2 at the omega-1 and at a novel site. Based on retention on HPLC and on limited mass fragmentation, we speculate that this site is omega-3 (i.e., 17-hydroxylation). Kinetic analysis of PGE1 hydroxylation demonstrated that the affinity of f4 for PGE1 is approximately 100-fold higher than that of RLM 5; the Km values for f4, monitoring 19- and 17-hydroxylation of PGE1, were about 10 microM. Surprisingly, cytochrome b5 stimulated the activity of RLM 5a and f4, but not that of RLM 5. Hydroxylation of PGE2 by RLM 5 was at the omega, omega-1, and omega-2 sites, demonstrating a lesser regioselectivity than with PGE1. These findings show that the constitutive P-450s differ dramatically in their ability to hydroxylate PGs, in their regioselectivity of hydroxylation, and in their cytochrome b5 requirement.  相似文献   

11.
Crude extracts of Streptomyces griseus grown on soybean flour-enriched medium contain high levels of cytochrome P-450. The cytochrome P-450-enriched fractions, obtained by ammonium sulfate fractionation (30-50% saturation), catalyze the NADPH-dependent oxidation of a variety of xenobiotics when complemented with both spinach ferredoxin:NADP+ oxidoreductase and spinach ferredoxin. Reactions observed are aromatic, benzylic and alicyclic hydroxylations, O-dealkylation, non-aromatic double bond epoxidation, N-oxidation and N-acetylation.  相似文献   

12.
The heme moieties of cytochromes P-450 and P1-450 (P-448) have been characterized. CO-binding particles, devoid of cytochrome b5, were prepared from normal or 3-methylcholanthrene-treated animals. Heme was removed by acid-acetone treatment of the CO-binding particles and crystallized. Heme isolated from hemoglobin of the corresponding animals served as a control. Reductive degradation (hydriodic acid) followed by gas chromatography/mass spectrometry analysis indicated the presence of opso-, crypto-, hemo-, and phyllopyrrole. Visible spectra of the iron-free tetrapyrroles isolated from microsomal heme and hemoglobin were identical and showed typical aetioporphyrin spectra. Finally, the mass spectra of the tetrapyrrole dimethyl esters isolated from microsomal heme and hemoglobin were identical to authentic protoporphyrin IX dimethyl ester. These data strongly suggest that the heme of cytochrome P-450 and P1-450 are identical and are the same the same as that of hemoglobin, namely protoporphyrin IX.  相似文献   

13.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles by a cholate dialysis technique. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme X CO complex by a vertically polarized laser flash. All cytochrome P-450 was found to be rotationally mobile when co-reconstituted with equimolar amounts of NADPH-cytochrome P-450 reductase in lipid to cytochrome P-450 ((L/P450)) = 1 (w/w] vesicles. Antibodies against NADPH-cytochrome P-450 reductase were raised. Their specificity was demonstrated by Ouchterlony double diffusion analysis. Antireductase Fab fragments were prepared from antireductase IgG by papain digestion. The N-demethylation of benzphetamine, catalyzed by the proteoliposomes, was significantly inhibited by antireductase IgG and by antireductase Fab fragments. Cross-linking of NADPH-cytochrome P-450 reductase by antireductase IgG resulted in complete immobilization of cytochrome P-450 in L/P450 = 1 vesicles. Antireductase IgG also immobilized cytochrome P-450 in L/P450 = 5 vesicles, although the degree of immobilization was slightly smaller. No immobilization of cytochrome P-450 in L/P450 = 1 vesicles was detected in the presence of antireductase Fab fragments or preimmune IgG. These results further support the proposal of the formation of monomolecular complexes between cytochrome P-450 and NADPH-cytochrome P-450 reductase in liposomal membranes (Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1982) J. Biol. Chem. 257, 7030-7036).  相似文献   

14.
15.
This laboratory has recently reported the isolation of an ethanol-inducible form of rabbit liver microsomal cytochrome P-450, designated isozyme 3a. In view of the reports of others that the hepatotoxicity of acetaminophen is increased in ethanol-treated animals and the human alcoholic, we have determined the activity of the six available P-450 isozymes in the activation of the drug to give an intermediate which forms a conjugate with reduced glutathione. Isozymes 3a, 4, and 6, all of which are present in significant amounts in the liver microsomes from rabbits chronically administered ethanol, exhibited the highest activities in the reconstituted enzyme system, whereas isozymes 3b and 3c were 10- to 20-fold less effective, and phenobarbital-inducible isozyme 2 was essentially inactive, even in the presence of cytochrome b5. The results obtained thus indicate that induction by ethanol of P-450 isozyme 3a (or a homologous enzyme in other species) may contribute to the toxicity of acetaminophen but that other cytochromes also play a significant role.  相似文献   

16.
The study of the effect of different ethanol concentrations in the medium on the growth and the activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. But when the initial concentration of ethanol in the medium was 3 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

17.
Pig kidney mitochondria were found to catalyze the formation of 26-hydroxycholesterol, an inhibitor of cholesterol biosynthesis. The cholesterol 26-hydroxylase was purified 600-fold. It was present in a mitochondrial enzyme fraction enriched in cytochrome P-450. The cytochrome P-450 fraction required NADPH, mitochondrial ferredoxin and ferredoxin reductase for 26-hydroxylase activity. The mitochondria and the purified 26-hydroxylase preparation also catalyzed 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and intermediate in cholic acid biosynthesis, and of 25-hydroxyvitamin D3. The role of extra-hepatic formation of 26-hydroxycholesterol is discussed.  相似文献   

18.
The conformation between the substrate-binding site and heme of cytochrome P-450 was studied by excitation energy transfer. Cytochrome P-450 was obtained from the hepatic microsomes of polychlorinated biphenyl-treated male rats, and ten polycyclic aromatic hydrocarbons were used as substrates. The energy transfer from the substrate to the heme of the enzyme was measured according to the F?rster equation. On the basis of the assumption that the substrates are bound at different positions in the plane of the same substrate-binding site, the position of the heme in relation to the substrate-binding site was determined in solution and in the presence of synthetic phospholipid. The results demonstrated that the distance between the substrate-binding site and the heme of cytochrome P-450 was greater when the enzyme was incorporated into micelles of phospholipid than when in solution, and that the conformational relationship of the substrate-binding site towards the heme was changed by an angle of 21 degrees on incorporation of the enzyme into phospholipid micelles.  相似文献   

19.
20.
The treatment of male rats with Hg2+ resulted in significant alterations in heme and hemoprotein metabolism in the adrenal gland which, in turn, were reflected in abnormal steroidogenic activities and steroid output. Twenty-four hours after the administration of 30 mumol of HgCl2/kg (sc) the mitochondrial heme and cytochrome P-450 concentrations increased by approximately 50%. Also, Hg2+ treatment stimulated a porphyrinogenic response which included an 11-fold increase in the activity of delta-aminolevulinate synthetase. The increase in mitochondrial cytochrome P-450 content was reflected in elevated steroid 11 beta-hydroxylase and cholesterol side-chain cleavage activities. In contrast, Hg2+ treatment resulted in decreased concentrations of microsomal cytochrome P-450 (-75%) and heme (-45%). Similarly, the reduction in the microsomal cytochrome P-450 content was accompanied by reduced steroid 21 alpha-hydroxylase and benzo[alpha]pyrene hydroxylase activities. The mechanisms responsible for the loss of the microsomal cytochrome P-450 content appeared to involve a selective impairment of formation of the holocytochrome as well as an enhanced rate of heme degradation. This suggestion is made on the basis of findings that (a) the decrease in the microsomal cytochrome P-450 content was accompanied by a sevenfold increase in the activity of adrenal heme oxygenase, (b) no decrease in apocytochrome P-450 could be detected in sodium dodecyl sulfate-gel electrophoresis of the solubilized microsomal fractions stained for heme, and (c) the concentration of adrenal microsomal cytochrome b5 was significantly increased in the Hg2+-treated animals. It is suggested that Hg2+ directly caused a defect in adrenal steroid biosynthesis by inhibiting the activity of 21 alpha-hydroxylase. The apparent physiological consequences of this effect included lowered plasma levels of corticosterone and elevated concentrations of progesterone and dehydroepiandrosterone. This abnormal plasma steroid profile is indicative of a 21 alpha-hydroxylase impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号