首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In all species studied, fertilization induces intracellular Ca2+ ([Ca2+]i) oscillations required for oocyte activation and embryonic development. This species-specific pattern has not been studied in the equine, partly due to the difficulties linked to in vitro fertilization in this species. Therefore, the objective of this study was to use intracytoplasmic sperm injection (ICSI) to investigate fertilization-induced [Ca2+]i signaling and, possibly, ascertain problems linked to the success of this technology in the horse. In vivo- and in vitro-matured mare oocytes were injected with a single motile stallion sperm. Few oocytes displayed [Ca2+]i responses regardless of oocyte source and we hypothesized that this may result from insufficient release of the sperm-borne active molecule (sperm factor) into the oocyte. However, permeabilization of sperm membranes with Triton-X or by sonication did not alleviate the deficient [Ca2+]i responses in mare oocytes. Thus, we hypothesized that a step downstream of release, possibly required for sperm factor function, is not appropriately accomplished in horse oocytes. To test this, ICSI-fertilized horse oocytes were fused to unfertilized mouse oocytes, which are known to respond with [Ca2+]i oscillations to injection of stallion sperm, and [Ca2+]i monitoring was performed. Such pairs consistently displayed [Ca2+]i responses demonstrating that the sperm factor is appropriately released into the ooplasm of horse oocytes, but that these are unable to activate and/or provide the appropriate substrate that is required for the sperm factor delivered by ICSI to initiate oscillations. These findings may have implications to improve the success of ICSI in the equine and other livestock species.  相似文献   

2.
In mammalian oocytes, fertilization-associated calcium [Ca2+]i oscillations are responsible for the activation of development. The mechanism(s) by which the sperm triggers the initial [Ca2+]i rise and supports long-lasting oscillations is not resolved. It has been proposed that the sperm may interact with receptors in the oocyte's plasma membrane and engage intracellular signaling pathways that result in Ca2+ release. A different line of investigation suggests that upon sperm-oocyte fusion, a sperm cytosolic factor is released into the oocyte which interacts with unknown cytosolic targets, and generates [Ca2+]i oscillations. We will discuss the most recent evidence for both lines of thought and demonstrate that injections of sperm crude extracts (SF) into mammalian oocytes trigger [Ca2+]i oscillations that support in vitro parthenogenetic development to the blastocyst stage.  相似文献   

3.
A cytosolic sperm protein(s), referred to as sperm factor (SF), is delivered into eggs by the sperm during mammalian fertilization to induce repetitive increases in the intracellular concentration of free Ca2+ ([Ca2+]i) that are referred to as [Ca2+]i oscillations. [Ca2+]i oscillations are essential for egg activation and early embryonic development. Recent evidence shows that the novel sperm-specific phospholipase C (PLC), PLCzeta, may be the long sought after [Ca2+]i oscillation-inducing SF. Here, we demonstrate the complete extraction of SF from porcine sperm and show that regardless of the method of extraction a single molecule/complex appears to be responsible for the [Ca2+]i oscillation-inducing activity of these extracts. Consistent with this notion, all sperm fractions that induced [Ca2+]i oscillations, including FPLC-purified fractions, exhibited high in vitro PLC activity at basal Ca2+ levels (0.1-5 microM), a hallmark of PLCzeta. Notably, we detected immunoreactive 72-kDa PLCzeta in an inactive fraction, and several fractions capable of inducing oscillations were devoid of 72-kDa PLCzeta. Nonetheless, in the latter fractions, proteolytic fragments, presumably corresponding to cleaved forms of PLCzeta, were detected by immunoblotting. Therefore, our findings corroborate the hypothesis that a sperm-specific PLC is the main component of the [Ca2+]i oscillation-inducing activity of sperm but provide evidence that the presence of 72-kDa PLCzeta does not precisely correspond with the Ca2+ releasing activity of porcine sperm fractions.  相似文献   

4.
At the time of fertilization, release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm of oocytes is said to be induced by hydrolysis of phosphatidylinositol bis phosphate (PI2) via activation of phospholipase C and is responsible for the Ca2+ oscillation in oocytes immediately after sperm penetration. On the other hand, cumulus cells have been reported to play an important role in cytoplasmic maturation of mammalian oocytes and to affect embryonic development after fertilization. To obtain more information on the role of cumulus cells in cytoplasmic maturation of oocytes, the effects of cumulus cells on the rise in [Ca2+]i and the rates of activation and development of porcine mature oocytes induced by IP3 injection were investigated. Mature porcine oocytes that had been denuded of their cumulus cells in the early stage of the maturation period had a depressed rise in [Ca2+]i (4.0-6.0) and reduced rates of activation (31.4-36.8%) and development (10.0-24.4%) induced by IP3 injection compared with those of their cumulus-enclosed counterparts (7.3, 69.1% and 43.8%; P < 0.05). The [Ca2+]i rise and the rates of activation and development depressed by the removal of cumulus cells were restored by adding pyruvate to the maturation medium. Furthermore, the IP3 injection-induced depression of [Ca2+]i rise in mature oocytes derived from cumulus-denuded oocytes (DOs) was restored when they were cultured in a medium with pyruvate (3.9-6.3, P < 0.05). Also, mature oocytes from cumulus-oocyte complexes (COCs) cultured in a medium without glucose had a lower rise in [Ca2+]i than that in mature oocytes from COCs cultured with glucose (7.4-6.0, P < 0.05). Cumulus cells supported porcine oocytes during maturation in the rise in [Ca2+]i induced by IP3 and the following activation and development of porcine oocytes after injection of IP3. Moreover, we inferred that a function of cumulus cells is to produce pyruvate by metabolizing glucose and to provide oocytes with pyruvate during maturation, thereby promoting oocyte sensitivity to IP3.  相似文献   

5.
Nakada K  Mizuno J 《Theriogenology》1998,50(2):269-282
The objectives of the present study were to clarify and compare the characteristics of the transient rises in intracellular calcium concentrations ([Ca2+]i) induced either by spermatozoa or by stimulation with artificial activators in bovine oocytes. These transient rises in [Ca2+]i in oocytes matured in vitro were recorded with Ca2+ imaging using the Ca2+ indicator fura-2. During fertilization, a series of transient rises in [Ca2+]i was observed. The first Ca2+ response peaked at a concentration of 521 +/- 39 nM (n = 20) and lasted for 4 min, while the subsequent Ca2+ responses were significantly smaller and shorter, with a peak of 368 +/- 13 nM (n = 23) and a duration of 2 min. Injection of inositol 1,4,5- triphosphate (InsP3) into unfertilized oocytes caused a transient rise in [Ca2+]i in a dose-dependent manner. The maximum response was induced by 20 nA x 1 sec injection of InsP3. Thimerosal, a sulfhydryl reagent, induced the repetitive transient rises in [Ca2+]i. The peak and the duration of the rises in [Ca2+]i induced by InsP3 or thimerosal were smaller and shorter, respectively, than those of the first rise induced by spermatozoa. Ethanol and Ca2+ ionophore IA23187, which are general parthenogenetic activators of unfertilized oocytes, each induced a single transient rise in [Ca2+]i. The duration of the rise in [Ca2+]i by ethanol or Ca2+ ionophore was significantly longer than that by spermatozoa at fertilization, although the peaks were smaller. These results clarified the characteristics of the rises in [Ca2+]i induced by spermatozoa and by several artificial reagents, and showed that the first rise in [Ca2+]i induced by spermatozoa had a higher peak [Ca2+]i and a longer duration compared with each the subsequent rises in [Ca2+]i and the rises in [Ca2+]i induced by artificial reagents. These indicate that a mode like as the first rise in [Ca2+]i induced by spermatozoa is an effective trigger for artificial activation of oocytes.  相似文献   

6.
Injections of cytosolic preparations from mammalian sperm into oocytes have been shown to trigger calcium [Ca2+]i oscillations and initiate activation of development. Recently, a protein isolated from hamster sperm has been suggested to be involved in the generation of these oscillations and it was named "oscillin." The human homologue of hamster oscillin is glucosamine 6-phosphate isomerase (GPI, EC no. 5.3.1.10), an enzyme so far described to be involved in hexose phosphate metabolism. To assess the role of GPI on Ca2+ signaling, a human recombinant protein was generated in a prokaryotic system and injected into fura-2-dextran-loaded metaphase II (MII) mouse oocytes. Injection of recombinant GPI failed to induce Ca2+ responses in 12/12 injected MII oocytes despite the fact that the recombinant GPI was active as assessed by an enzymatic assay. Injection of buffer (0/6 oocytes) or fructose-6-phosphate, a product of GPI enzymatic reaction (0/5 oocytes), also failed to initiate Ca2+ responses. Conversely, injections of sperm cytosolic factor induced [Ca2+]i oscillations in all 17/17 oocytes. In addition, injection of recombinant GPI or GPI mRNA failed to induce parthenogenetic activation (0/30 oocytes). Immunofluorescence studies using an anti-GPI polyclonal antibody (GK) resulted in localization of GPI to the sperm's equatorial region. Incubation of the GK antibody with sperm extracts failed to block the [Ca2+]i responses induced by these extracts. Moreover, near complete depletion of GPI from sperm fractions by immunoprecipitation did not impair the ability of these fractions to induce [Ca2+]i oscillations. In summary, our results support the role of a sperm cytosolic component(s) in the generation of [Ca2+]i oscillations during mammalian fertilization, although a protein other than GPI/oscillin is likely to be the active calcium releasing factor.  相似文献   

7.
At fertilization, the sperm initiates development of the mouse egg by inducing a large transient increase in the intracellular Ca2+ concentration ([Ca2+]i), which is followed by repetitive transient increases in [Ca2+]i. To determine how the repetitive Ca2+ transients are produced, thapsigargin, an inhibitor of the endoplasmic reticulum Ca-ATPase, was used to deplete intracellular Ca2+ stores within the egg. In the unfertilized egg, thapsigargin (1-50 microM) caused a slowly rising and falling transient increase in [Ca2+]i with or without extracellular Ca2+. An influx pathway for Ca2+ is activated by thapsigargin, since an immediate increase in [Ca2+]i occurred when Ca2+ was added to eggs after thapsigargin treatment in a Ca2+, Mg(2+)-free medium. This suggests that Ca2+ entry in the mouse egg may be coupled to the emptying of an intracellular store. The magnitude of the first Ca2+ transient at fertilization was reduced by as much as 84% in eggs pretreated with thapsigargin. Reduction of extracellular Ca2+, by addition of a Ca2+ chelator, suppressed the repetitive Ca2+ transients following fertilization. The Ca2+ transients also require filling of an intracellular store; they were suppressed when thapsigargin was added before or after fertilization. These results support the hypothesis that the first sperm-induced Ca2+ transient at fertilization depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and that the enhanced Ca2+ influx causes repetitive Ca2+ transients due to the periodic filling and emptying of an intracellular Ca2+ store.  相似文献   

8.
Intracytoplasmic sperm injection (ICSI) into mammalian eggs induces repetitive rises in intracellular Ca2+ concentration ([Ca2+]i) which are the pivotal signal in fertilization. Spatiotemporal aspects of [Ca2+]i rises following ICSI into the periphery of mouse eggs were investigated with high-speed confocal microscopy. The first Ca2+ response was generated 25-30 min after ICSI, when [Ca2+]i increased slowly and reached a certain level. The [Ca2+]i rise occurred synchronously over the ooplasm, attained the peak in 40-70 s, and lasted for 5-7 min. Succeeding Ca2+ responses occurred at intervals of 20-30 min, associated with the faster rate of [Ca2+]i rise and the shorter duration as Ca2+ oscillations progressed. The [Ca2+]i rises took the form of a wave that started from an arbitrary cortical region, but not from the vicinity of the injected sperm head. The Ca2+ wave became more pronounced and propagated across the egg faster in the later Ca2+ responses. An artifactual [Ca2+]i rise was inevitably produced during the ICSI procedure. The larger artifact affected the subsequent first Ca2+ response, resulting in the faster [Ca2+]i rise (time to peak, 10-20 s), slight spatial heterogeneity of [Ca2+]i rise in the ooplasm (but not a wave) and the shorter duration (3-4 min). The artifact slightly affected the amplitude of the second Ca2+ response, but little affected the later Ca2+ responses. It is suggested that the factor(s) that leaked out of the injected spermatozoon diffuses to a wide area and sensitizes Ca2+ channels of the endoplasmic reticulum to induce Ca2+ release synchronously over the ooplasm. The enhanced sensitization leads to propagating Ca2+ release initiated from the cortex that is more sensitive to the sperm factor.  相似文献   

9.
We have made the first measurements of intracellular free calcium activity ([Ca2+]i) in urodele eggs during physiological polyspermic fertilization. Jellied eggs of the urodele amphibian Pleurodeles waltlii were impaled with intracellular Ca(2+)-selective microelectrodes and inseminated under various conditions of sperm:egg ratio to obtain various degrees of polyspermy. In 17 out of 45 cases the egg [Ca2+]i level (0.41 microM) showed no variation following fertilization. In 28 other cases, however, the egg displayed a slow increase in [Ca2+]i of 0.15 microM, starting around 15 minutes after fertilization and reaching a plateau level around 10 minutes later. The amplitude of the fertilization-associated increase in [Ca2+]i was found to be independent of the number of sperm interacting with the egg surface. Measurements with two Ca(2+)-microelectrodes impaled in single eggs showed that the increase in [Ca2+]i did not simultaneously occur at distinct places within the egg cortex and, in some cases, could be detected by only one of the two microelectrodes. This latter observation, as well as the absence of [Ca2+]i change at fertilization in some experiments, strongly suggested that each sperm interacting with the egg might, at various places, trigger a localized, non-propagating change in [Ca2+]i. Experiments in which eggs were locally inseminated, using a micropipette directed towards the site of impalement of one of the two Ca(2+)-microelectrodes, clearly established that [Ca2+]i changes, although incapable of propagating over the entire egg cortex, might nevertheless travel very slowly over short distances, their amplitude vanishing rapidly as they propagate from around the sites of sperm entry.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC.  相似文献   

11.
Immature oocytes of many species are incompetent to undergo cortical granule (CG) exocytosis upon fertilization. In mouse eggs, CG exocytosis is dependent primarily on an inositol 1,4,5-trisphosphate (IP3)-mediated elevation of intracellular calcium ([Ca2+]i). While deficiencies upstream of [Ca2+]i release are known, this study examined whether downstream deficiencies also contribute to the incompetence of preovulatory mouse oocytes to release CGs. The experimental strategy was to bypass upstream deficiencies by inducing normal, fertilization-like [Ca2+]i oscillations in fully grown, germinal vesicle (GV) stage oocytes and determine if the extent of CG exocytosis was restored to levels observed in mature, metaphase II (MII)-stage eggs. Because IP3 does not stimulate a normal Ca2+ response in GV-stage oocytes, three alternate methods were used to induce oscillations: thimerosal treatment, electroporation, and sperm factor injection. Long-lasting oscillations from thimerosal treatment resulted in 64 and 10% mean CG release at the MII and GV stages, respectively (P < 0.001). Three electrical pulses induced mean [Ca2+]i elevations of approximately 730 and 650 nM in MII- and GV-stage oocytes, respectively, and 31% CG release in MII-stage eggs and 9% in GV-stage oocytes (P < 0.001). Sperm factor microinjection resulted in 86% CG release in MII-stage eggs, while similarly treated GV-stage oocytes exhibited < 1% CG release (P < 0.001). Taken together, these results demonstrate a deficiency downstream of [Ca2+]i release which is developmentally regulated in the 12 h prior to ovulation.  相似文献   

12.
Sea urchin sperm must undergo the acrosome reaction to fertilize eggs. The natural inducer of this reaction is the most external coat of the egg, named 'jelly'. The ionic composition of the extracellular and intracellular media and the permeability properties of the sperm plasma membrane are fundamental in this reaction. As Ca2+ is required for the acrosome reaction to occur, its intracellular concentration ([Ca2+]i) was measured with fura-2. In 10 mM Ca2+, egg jelly induced the acrosome reaction and an increase in [Ca2+]i that lasted for several minutes. However, at 0.5 or 2 mM Ca2+, it became evident that the Ca2+-influx pathway activated by jelly opened only for a few seconds; this prevented both the full increase in [Ca2+]i and the acrosome reaction even after the concentration of Ca2+ was raised to 10 mM. In the presence of jelly, the time this permeability pathway remained open was inversely related to the extracellular concentration of Ca2+ ([ Ca2+]e). Using Bisoxonol (a permeant fluorescent membrane potential probe), it was found that the jelly-induced depolarization depended on [Ca2+]e and was proportional to the increase in [Ca2+]i. Since [Ca2+]i could affect the jelly-induced Ca2+ influx through calmodulin, two of its antagonists, trifluoperazine and W-7, were tested. Both compounds blocked the acrosome reaction by inhibiting the jelly-induced increase in [Ca2+]i. W-5 at the same concentration had no effect. The results suggest that one of the jelly-activated Ca2+-influx pathways, probably a channel, is the target of the calmodulin antagonists.  相似文献   

13.
Fertilization in all species studied to date induces an increase in the intracellular concentration of free calcium ions ([Ca2+]i) within the egg. In mammals, this [Ca2+]i signal is delivered in the form of long-lasting [Ca2+]i oscillations that begin shortly after fusion of the gametes and persist beyond the time of completion of meiosis. While not fully elucidated, recent evidence supports the notion that the sperm delivers into the ooplasm a trigger of oscillations, the so-called sperm factor (SF). The recent discovery that mammalian sperm harbor a specific phospholipase C (PLC), PLCzeta has consolidated this view. The fertilizing sperm, and presumably PLCzeta promote Ca2+ release in eggs via the production of inositol 1,4,5-trisphosphate (IP3), which binds and gates its receptor, the type-1 IP3 receptor, located on the endoplasmic reticulum, the Ca2+ store of the cell. Repetitive Ca2+ release in this manner results in a positive cumulative effect on downstream signaling molecules that are responsible for the completion of all the events comprising egg activation. This review will discuss recent advances in our understanding of how [Ca2+]i oscillations are initiated and regulated in mammals, highlight areas of discrepancies, and emphasize the need to better characterize the downstream molecular cascades that are dependent on [Ca2+]i oscillations and that may impact embryo development.  相似文献   

14.
A possible Na/Ca exchange in the follicle cells of Xenopus oocyte   总被引:1,自引:0,他引:1  
In manually dissected Xenopus oocytes, we found that the replacement of external sodium by Tris, choline, or lithium induced a large membrane depolarization and, in voltage clamp, a large inward current. This current appears to be due to activation of a calcium-dependent chloride conductance since it is reversed near ECl, increased by the removal of external chloride, and can be abolished by an injection of BAPTA or by the removal of external Ca2+. Using the Ca-dependent Cl current as a monitor of Ca concentration at the inner surface of the oocyte membrane, we are led to propose that the removal of external Na+ induces an increase in internal Ca2+ via the activation of a Na/Ca exchanger operating in the reverse mode. This interpretation is supported by the finding that the chloride current is diminished in either 3',4'-dichlorobenzamyl (DCB) or high external [Mg2+]o, both of which are known to block the Na/Ca exchanger, whereas it is increased when Li+, rather than Tris or choline, is used as the substitute for Na. The effect of zero [Na+]o was not obtained in oocytes from which follicular cells were removed by enzymatic treatment. This observation led us to test the possibility that the Na/Ca exchanger was present in the follicle cells and not in the oocyte membrane, assuming that entering Ca2+ could pass into the oocyte through gap junctions. Octanol, which blocks gap junctions, or a high [Ca2+]o both considerably reduced the inward current. While octanol probably blocked the gap junctions directly, we propose that the block by high [Ca2+] was due to an excessive rise of [Ca2+]i in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicle cells of Xenopus oocyte which could contribute to the regulation of the internal Ca concentration of the oocyte before fertilization.  相似文献   

15.
Zona pellucida (ZP)-induced acrosome reaction in sperm is a required step for mammalian fertilization. However, the precise mechanism of the acrosome reaction remains unclear. We previously reported that PLCdelta4 is involved in the ZP-induced acrosome reaction in mouse sperm. Here we have monitored Ca2+ responses in single sperm, and we report that the [Ca2+]i increase in response to ZP, which is essential for driving the acrosome reaction in vivo, is absent in PLCdelta4-/- sperm. Progesterone, another physiological inducer of the acrosome reaction, failed to induce sustained [Ca2+]i increases in PLCdelta4-/- sperm, and consequently the acrosome reaction was partially inhibited. In addition, we observed oscillatory [Ca2+]i increases in wild-type sperm in response to these acrosome inducers. Calcium imaging studies revealed that the [Ca2+]i increases induced by exposure to ZP and progesterone started at different sites within the sperm head, indicating that these agonists induce the acrosome reaction via different Ca2+ mechanisms. Furthermore, store-operated channel (SOC) activity was severely impaired in PLCdelta4-/- sperm. These results indicate that PLCdelta4 is an important enzyme for intracellular [Ca2+]i mobilization in the ZP-induced acrosome reaction and for sustained [Ca2+]i increases through SOC induced by ZP and progesterone in sperm.  相似文献   

16.
In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, namely ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for the induction of acrosome reaction. For the induction, ARIS alone is enough in high-Ca2+ or high-pH seawater, but, besides ARIS, the addition of either Co-ARIS or asterosap is required in normal seawater. Asterosap transiently increased both the intracellular pH (pHi) and Ca2+ ([Ca2+]i), while ARIS slightly elevated the basal level of [Ca2+]i. However, a sustained elevation of [Ca2+]i and acrosome reaction occurred if sperm were simultaneously treated with ARIS and asterosap. EGTA inhibited the sustained [Ca2+]i elevation and acrosome reaction. The sustained [Ca2+]i elevation and acrosome reaction were highly susceptible to SKF96365 and Ni2+, specific blockers of the store-operated Ca2+ channel (SOC). These results suggest that sustained [Ca2+]i elevation, mediated by the SOC-like channel, is a prerequisite for the acrosome reaction. In high-pH seawater, ARIS alone induced a prominent [Ca2+]i increase and acrosome reaction, which were similarly sensitive to SKF96365. The acrosome reaction was effectively induced by ARIS alone when pHi was artificially increased to more than 7.7. Asterosap increased pHi from 7.6 +/- 0.1 to 7.7 +/- 0.1. Furthermore, the sustained [Ca2+]i elevation and acrosome reaction, induced by a combination of ARIS and asterosap, were drastically inhibited by a slight reduction in pHi. Taking these results into account, we suggest that an asterosap-induced pHi elevation is required for triggering the ARIS-induced sustained [Ca2+]i elevation and consequent acrosome reaction.  相似文献   

17.
The experiments compare intracellular changes in porcine eggs induced by electrical activation with those induced by sperm penetration. Adequate electrostimulation induces changes in both cortical granule exocytosis and protein synthesis similar to those induced by sperm during fertilization. However, ionic changes induced by electrostimulation differ markedly from those initiated at fertilization. Thus, dynamic video imaging using Fura-2 as a Ca2+ probe provides evidence that parthenogenetic activation induced by electrostimulation is initiated by a single sharp rise in the concentration of intracellular free calcium ([Ca2+]i) in the egg. The intracellular Ca2+ transient increase is triggered by an influx of extracellular Ca2+ immediately after electrostimulation. The amplitude of the intracellular Ca2+ transient increase is a function both of the extracellular Ca2+ concentration and of electric field parameters (field strength and pulse duration). Imaging demonstrates further that a single electrical pulse can only induce a single Ca2+ transient which usually lasts three to five minutes; no further Ca2+ transients are observed unless additional electrical stimuli are applied. By contrast, sperm-induced activation is characterised by a series of Ca2+ spikes which continue for at least 3 hours after sperm-egg fusion. The pattern of Ca2+ spiking after fertilization is not consistent during this period but changes both in frequency and amplitude. Overall, the results demonstrate that, although electrostimulation induces both cortical granule exocytosis and protein reprogramming in porcine eggs, it does not reproduce the pattern of [Ca2+]i changes induced by sperm entry at fertilization.  相似文献   

18.
At fertilisation, repetitive increases in the intracellular Ca2+ concentration, [Ca2+]i, drive the completion of meiosis and initiate the development of the quiescent egg into an embryo. Although the requirement for an ATP supply is evident, the relative roles of potential ATP sources remains unclear in the mammalian egg, and the specific role of mitochondria in [Ca2+]i regulation as well as in the sperm-triggered [Ca2+] oscillations is unknown. We have used fluorescence and luminescence imaging to investigate mitochondrial activity in single mouse eggs. Simultaneous imaging of mitochondrial redox state (NADH and flavoprotein autofluorescence) and [Ca2+]i revealed that sperm-triggered [Ca2+] oscillations are transmitted to the mitochondria where they directly stimulate mitochondrial activity. Inhibition of mitochondrial oxidative phosphorylation caused release of Ca2+ from the endoplasmic reticulum because of local ATP depletion. Mitochondrial ATP production is an absolute requirement for maintaining a low resting [Ca2+]i and for sustaining sperm-triggered [Ca2+] oscillations. Luminescence measurements of intracellular [ATP] from single eggs confirmed that mitochondrial oxidative phosphorylation is the major source of ATP synthesis in the dormant unfertilised egg. These observations show that a high local ATP consumption is balanced by mitochondrial ATP production, and that balance is critically poised. Mitochondrial ATP supply and demand are thus closely coupled in mouse eggs. As mitochondrial ATP generation is essential to sustain the [Ca2+] signals that are crucial to initiate development, mitochondrial integrity is clearly fundamental in sustaining fertility in mammalian eggs.  相似文献   

19.
Repetitive calcium transients in hamster oocytes   总被引:6,自引:0,他引:6  
S Miyazaki 《Cell calcium》1991,12(2-3):205-216
Golden hamster oocytes show repetitive Ca2+ transients at fertilization: a propagating Ca2+ rise from the sperm attachment site in the first 2-3 responses and synchronous Ca2+ rise in the entire egg in the succeeding responses. Cyclic Ca2+ rises are produced in unfertilized eggs by an injection of GTP gamma S or continuous injection of inositol 1,4,5-trisphosphate (InsP3). Both InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR) are observed in hamster eggs, associated with a refractory period of 1-2 min after a Ca2+ release. In addition, external Ca2+ is a prerequisite for maintaining the repeated Ca2+ transients. The conditions that are expected to alter Ca2+ influx affect the frequency of Ca2+ transients with little effect on each response. The fertilizing sperm causes an increase in Ca2+ permeability of the egg plasma membrane and an increase in Ca2+ sensitivity of CICR. Feedback inhibition through protein kinase C is observed in G-protein-mediated Ca2+ transients but this inhibition seems to operate rather tonically. A model of Ca2+ oscillation is proposed: basically a second messenger-controlled oscillator model. InsP3 as the rigger of Ca2+ release is continuously supplied while an elevated basal [Ca2+]i level due to Ca2+ influx provides a favourable condition for IICR and CICR as well as for recharging the Ca2+ pools ready to release Ca2+ again.  相似文献   

20.
Sea urchin sperm motility is modulated by sperm-activating peptides. One such peptide, speract, induces changes in intracellular free calcium concentration ([Ca2+]i). High resolution imaging of single sperm reveals that speract-induced changes in [Ca2+]i have a complex spatiotemporal structure. [Ca2+]i increases arise in the tail as periodic oscillations; [Ca2+]i increases in the sperm head lag those in the tail and appear to result from the summation of the tail signal transduction events. The period depends on speract concentration. Infrequent spontaneous [Ca2+]i transients were also seen in the tail of unstimulated sperm, again with the head lagging the tail. Speract-induced fluctuations were sensitive to membrane potential and calcium channel blockers, and were potentiated by niflumic acid, an anion channel blocker. 3-isobutyl-1-methylxanthine, which potentiates the cGMP/cAMP-signaling pathways, abolished the [Ca2+]i fluctuations in the tail, leading to a very delayed and sustained [Ca2+]i increase in the head. These data point to a model in which a messenger generated periodically in the tail diffuses to the head. Sperm are highly polarized cells. Our results indicate that a clear understanding of the link between [Ca2+]i and sperm motility will only be gained by analysis of [Ca2+]i signals at the level of the single sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号