首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Our aim was to address the potential effect of the geographical range size of species on the relationships between plant traits, soil and climate in Chinese grasslands. Previous analyses tended to examine plant–environment relationships across many species while ignoring that species with different range sizes may respond differently to the environment. Here we hypothesized that leaf traits of narrow‐ranging species would be more strongly correlated with soil and climatic variables than those of wide‐ranging species. Location Chinese grasslands. Methods Data on leaf traits, including nitrogen and phosphorus concentrations, carbon/nitrogen ratio, nitrogen/phosphorus ratio and specific leaf area, as well as species range sizes for 208 species distributed across 178 sites in Chinese grasslands were collected. Soil and climate information for each study site was also gathered. The effects of range size on leaf traits were tested using one‐way ANOVA. Correlations between leaf traits, soil and climate were calculated for all species pooled together and for species partitioned into range size quartiles, from the first (narrowest‐ ranging 25%) to the fourth (widest‐ranging 25%). Results Narrow‐ranging species tended to occur at high altitude with lower temperature but higher soil nutrient concentrations compared with wide‐ranging species. No direct link between leaf traits and species range sizes was detected. However, patterns of leaf–soil nutrient relationships changed significantly across levels of range size. Narrow‐ranging species tended to be more sensitive to variation in soil nutrient availability than wide‐ranging species, resulting in a shift from a positive leaf–soil nutrient relationship for narrow‐ranging plants to no relationship for wide‐ranging plants. Species responses to climatic variables were unrelated to their range sizes. Main conclusions The close relationship between leaf and soil nutrients indicates a specialization of narrow‐ranging species to particular habitats whereas wide‐ranging species may be able to better withstand changes in environment such as soil fertility over a large area.  相似文献   

2.
Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause.  相似文献   

3.
The rhizosphere environment of tea (Camelllia sinensis Kuntze) intercropped with persimmon (Diospyros kaki) differs from monocultures of tea.A trial was conducted to determine the effects of intercropping with persimmon on root exudates and soil nutrient condition of tea.Amino acid exuded in intercropping was three times higher than that in monoculture.Phenol,phenol/amino acid ration,dissolved sugar,and total organic acid were also lower in intercropping.The value of pH in soil was higher,and soil nutrient condition of rhizosphere,especially available nutrient,was not as well in intercropping as that in tea grown alone.While soil nutrient of non-rhizosphere was better than that in monoculture,tea quality and soil nutrient condition were better in intercropping ecosystem.  相似文献   

4.
设施土壤生态环境特点与调控   总被引:21,自引:0,他引:21  
论述了设施土壤生态环境的特性主要是土壤养分富集 ,土壤板结 ;土壤酸化、次生盐渍化和连作障碍严重 ;土壤产生有害气体 ;土壤微生物区系变化很大。这些特点主要是盲目大量施肥 ,土壤长期连续利用 ,土壤环境密闭 ,单一化栽培 ,用肥种类不合理及某些化学物质积累造成的。利用生物、农业耕作、地上环境和工程措施调控相结合 ,是调控设施土壤生态环境的有效方法 ,土壤生物学的应用将是改善设施土壤生态环境新的研究方向。  相似文献   

5.
Pot experiments are frequently used to examine plant, soil, and microbial interactions that cannot be studied in situ. Although impacts of the pot environment on seedling growth have long been recognized, they are rarely addressed directly in current ecological studies. Here we examine how commonly used soil conditioners, often necessary to maintain adequate drainage in pots, can influence nutrient availability and seedling growth. Balsawood (Ochroma pyramidalis) seedlings were grown in central Panama in soil combined in a 50:50 mix with one of the following soil conditioners: marine sand, pure sand, perlite, vermiculite, or rice husks. Soil nutrient availability, foliar N and P, and seedling growth were compared after 1 month. Rice husks dramatically reduced soil nitrate, seedling growth, and foliar N. Other conditioners had smaller effects on growth, although vermiculite may be a significant source of base cations in infertile soils. Marine sand had a strong neutralizing effect on acidic soil due to the presence of calcareous shell fragments. Effects of soil conditioners need to be added to other known artifacts of the pot environment influencing nutrient availability, including alterations to N mineralization rates relative to bulk soil, and pot-size effects on N:P availability. These artifacts can strongly influence plant performance and therefore the interpretation of ecological studies.  相似文献   

6.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

7.
We studied the relative importance of the aboveground and belowground environment for survival and growth of emerged seedlings of Centaurea jacea to better understand the general difficulty of establishing late-successional species at restoration sites on ex-arable land. Potted seedlings growing on soil from six late-successional grasslands and from six ex-arable (restoration) sites were reciprocally exchanged, and survival and relative growth rate of the seedlings monitored. In addition, we assessed aboveground herbivory and colonization of roots by arbuscular myccorhizal fungi of all plants, as well as nutrient availability, and microbial biomass and community composition using PLFA techniques in all twelve soils. Seedling survival was higher in restoration habitat and soil than in grassland habitat and soil, but growth did not differ between the aboveground and belowground environment types. Shoot growth rate was initially correlated with soil nutrient content, and later in the experiment with mycorrhizal colonization levels. Our results indicate that arbuscular mycorhizal fungi may be important for the successful establishment of C. jacea and that abiotic soil factors, like K availability and N:P ratio, can promote mycorrhizal colonization. Hence, the belowground environment should be considered when selecting sites for restoring species-rich grasslands.  相似文献   

8.
The parent material of a soil determines the original supply of those nutrient elements that are released by weathering and influences the balance between nutrient loss and retention. Organic acids and exudates produced by microorganisms and plants enhance the weathering of minerals and the release of nutrients. Nutrients may be stored in organic cycles or as ions adsorbed to clay and organic matter. Nutrients are lost mainly by leaching, both as dissolved ions and when associated with soluble organic components. Soil formation evidently affects these processes and modifies the environment at different depths as soil horizons develop. Strong interactions between mineral and organic colloids occur where most residues are added below ground, as in grasslands, or mixed with mineral soil by faunal activity, as in some forests. These systems tend to be nutrient conserving. The addition of organic residues to the soil surface often results in slow decomposition, the tie-up of many nutrients in biologically resistant humic materials, and the generation of organic acids that are active in leaching and chelation. These soils tend to lose nutrients by leaching and become strongly acidic with time. Leaching is strongest in uplands with net downward flows to deep water tables, and may be dampened or obviated in lowlands with strong upward fluxes due to artesian pressure or capillary rise from a water table that is close to the surface. Pedogenic features such as clayeyB horizons or duripans may alter water flow. Simonson's concepts that all basic soil-forming processes occur to some degree in all soils are critical to developing models describing soil formation and nutrient cycles.  相似文献   

9.
下辽河平原农业生态系统不同施肥制度的土壤养分收支   总被引:8,自引:4,他引:8  
本试验是在潮棕壤上进行了10年的定位试验,研究了在养分循环再利用的基础上采取不同施肥制度下作物养分移出量,并结合施肥量计算出土壤中N,P,K养分收支。结果表明,在保持农业系统养分循环再利用的基础上,根据养分供给力设计化肥施用量,不仅可实现作物主产,而且可平衡土壤养分收支,避免土壤中肥料养分过剩(主要是N)进入环境,并揭示了我国我国在20世纪70年代以前大面积农田土壤缺P和80年代农田土壤大面积缺K的原因。  相似文献   

10.
杉木不同家系对异质养分环境的适应性反应差异   总被引:2,自引:0,他引:2       下载免费PDF全文
 构建异质和同质两种养分环境,选择3个杉木(Cunninghamia lanceolata)优良家系作试验材料,并以马尾松(Pinus massoniana)为参照,通过 量化分析不同养分环境中植株生长量、干物质积累和分配、根系形态、养分吸收和利用效率等,研究杉木家系对异质养分环境的适应性反应差 异。结果表明,3个杉木参试家系对不同养分环境的生长反应差异显著,‘锦屏45’家系在异质养分环境中苗高生长量大、干物质积累量多、根 系发达,而‘龙15’和‘靖398’两个家系则在同质养分环境中表现较好。 杉木不同家系的根系均主要在异质养分环境之贫养斑块中大量增生 ,根系形态可塑性与觅养精确性较低。作为参照的马尾松,对异质养分环境反应敏感,根系广布性大、觅养精确性高。在3个参试杉木家系中, ‘龙15’和‘靖398’对异质养分环境的生长反应敏感度低,根系生理可塑性一般,而‘锦屏45’对异质养分环境的生长反应敏感度较高,根系 生理可塑性较高。试验观测到不同杉木家系在异质养分环境中根系N、P、K吸收效率通常低于同质养分环境。在富养斑块中的根系养分吸收效率 明显低于贫养斑块,这与马尾松在富养斑块中根系养分吸收效率较高有很大的差异。然而杉木家系在富养斑块中根系的养分含量却不同程度地 高于贫养斑块或与之相 近。‘锦屏45’家系在异质环境中生长表现显著地优于同质养分环境,除因其具有较高的根系生理可塑性外,还与较多 比例的干物质和营养元素分配至地上部分、根冠比较少有关。  相似文献   

11.
The ancient landscape of the South - West Australian Floristic Region (SWAFR) is characterized by exceptional floristic diversity, attributed to a complex mosaic of nutrient - impoverished soils. Between - soil type differences in nutrient availability are expected to affect floristic assemblage patterns in the SWAFR. We compared patterns of floristic diversity between open - forest samples from three soil types in the high - rainfall zone of the SWAFR. The importance of environmental and spatial factors for species compositional turnover within soil types were evaluated within canonical correspondence analyses using variation partitioning. Patterns of phylogenetic diversity and dispersion were contrasted between soil types and related to differences in soil nutrient availability. Between - quadrat shared phylogenetic branch length for individual life form categories was correlated with explanatory variables using Mantel tests. Species and phylogenetic diversity increased with a decline in soil nutrients and basal area. Nutrient - poorer soils were differentiated by higher species density and phylogenetic diversity, and larger phylogenetic distances between species. Species turnover was best explained by environmental factors when soil nutrient concentrations and basal area were low. Coastal and inland quadrats from the most fertile soil type were distinguished by significantly differing patterns of phylogenetic diversity. Inland quadrats were characterized by strong relationships between phylogenetic diversity and environment, while phylogenetic patterns remained largely unaccounted for by explanatory variables within coastal quadrats. Phylogenetic diversity was more strongly related with environment within upland landform types for nutrient-poor soils. We highlight the complex relationships between climatic and edaphic factors within the SWAFR, and propose that the occurrence of refugial habitat for plant phylogenetic diversity is dynamically linked with these interactions. Climate change susceptibility was estimated to be especially high for inland locations within the high - rainfall zone. Despite the strong relationship between floristic diversity and soil fertility, holistic conservation approaches are required to conserve the mosaic of soil types regardless of soil nutrient status.  相似文献   

12.
Kylafis G  Loreau M 《Ecology letters》2008,11(10):1072-1081
Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.  相似文献   

13.
From an eight by eight factorial crossing with Salix viminalis, 40 of the 64 families obtained were selected for further analysis. Fourteen seedplants from each of these 40 families were planted in two pairs of contrasting environments: sand and clay soil, and low and high nutrient supply. The material in the soil contrast was harvested after 1, 4 and 6 years of growth. The material in the nutrient contrast was harvested each year for 3 years and analysed after the first and the third harvests. The correlation between number of shoots and weight in the clay environment changed from being negative in the first harvests to positive at the last harvest, compared with the sand environment where this correlation was positive in all years. In the nutrient contrast this correlation was positive at the last harvest in the high nutrient environment, but no correlation could be detected in the low nutrient environment. The differences in correlations between environments may be due to a different allocation of nutrients in the plants, depending on whether the plant is under stress or not. The data suggests that the genetic relationship between growth components is the same over age and environments when the plants are grown without stress.  相似文献   

14.
根分泌的有机酸对土壤磷和微量元素的活化作用   总被引:35,自引:12,他引:35  
在养分胁迫下,尤其是缺磷条件下,许多植物可通过增加有机酸的分泌,作为其适应机制.讨论了营养胁迫条件下不同生态型植物根系分泌有机酸的种类,分析了不同生态型植物分泌的有机酸种类和数量之间的差异.结果表明,在缺磷条件下植物根系所分泌有机酸的种类和数量与它们所处的土壤环境关系密切.在营养胁迫条件下植物根系分泌的有机酸具有活化土壤磷、微量元素和缓解Al毒的功能;对有机酸活化土壤养分,解Al毒可能的作用机制进行了论述  相似文献   

15.
Kauri dieback, caused by Phytophthora agathidicida, is a biotic disturbance that poses a recent threat to the survival of kauri (Agathis australis) forests in New Zealand. Previous studies have shown that throughfall and stemflow play an important role in the kauri forests’ internal nutrient cycle. However, the effects of P. agathidicida infection on canopy and forest floor nutrient fluxes in kauri forests remain unknown. Here, we measured throughfall, stemflow and forest floor water yield, nutrient (potassium, calcium, magnesium, manganese, silicon, sulfur, sodium, iron) concentrations and fluxes of ten kauri trees differing in soil P. agathidicida DNA concentration, and health status. We did not observe an effect of soil P. agathidicida DNA concentration on throughfall, stemflow, and forest floor water yield. Throughfall and forest floor nutrient concentrations and fluxes decreased (up to 50%) with increasing soil P. agathidicida DNA concentration. We found significant effects on potassium and manganese fluxes in throughfall; calcium and silicon fluxes in forest floor leachate. A decline in canopy and forest floor nutrient fluxes may result in soil nutrient imbalances, which in turn may negatively impact forest productivity and may increase the susceptibility of trees to future pathogen infection in these ecologically unique kauri forests. Given our findings and the increasing spread of Phytophthora species worldwide, research on the underlying physiological mechanisms linking dieback and plant–soil nutrient fluxes is critical.  相似文献   

16.
土壤微生物与土壤质量、健康、植物的生产力和农业的可持续发展密切相关。任何对土壤中微生物的扰动都可能影响土壤的长期生产力,并可能产生严重后果。大量研究结果表明,肥料类型、施肥处理年限长短、施肥水平高低及施肥措施都会造成土壤成分的变化,进而影响土壤中微生物的生长以及繁殖。简要介绍了微生物量的几种测定方法,综述了各种养分管理措施对农田生态系统中土壤微生物量的影响,从而了解土壤微生物因人类对土壤的利用而发生的变化,以期为农业的可持续发展和生态环境的保护提供理论依据。  相似文献   

17.
A new approach that permits culture-independent identification of microorganisms that respond to specified stimuli was developed. This approach was illustrated by examination of microorganisms that grew in response to various nutrient supplements added to soil. A thymidine nucleotide analog, bromodeoxyuridine (BrdU), and supplements were added to soil and incubated for 3 days. DNA was extracted from the soil, and the newly synthesized DNA was isolated by immunocapture of the BrdU-labeled DNA. The unique perspective this approach offers was demonstrated by comparing the microbial community structures obtained from total soil DNA and the BrdU-labeled fraction in an rRNA gene (rDNA) analysis. The traditional total DNA analysis revealed no notable differences between the treatments, whereas the BrdU-labeled DNA showed significantly different banding patterns between the nutrient supplement treatments and compared with total DNA banding patterns. PCR primers were developed to specifically amplify the intergenic region of an rDNA sequence unique to the BrdU analysis of a phosphate supplement treatment. Amplification of DNA from all treatments using these primers showed that it was unique to the phosphate treatment and that it was present in both the total DNA and BrdU-labeled DNA fractions. This result demonstrates the promise of this new strategy, because it was able to permit identification of a sequence from a phosphate-responsive organism that was not discernable in the traditional total DNA community structure analysis.  相似文献   

18.
许了1985-1999年试验期间各模拟施肥模型的作物移出养分量和施肥输入养分量,结果表明,施用N肥可加剧土壤P收支赤字,而施用N,P肥则加剧土壤K收支赤字,实验展示了我国在20世纪70年代大面积贫P土壤和80年代大面积缺K土壤出现的原因,保持养分循环再利用可缓解土壤养分收支赤字,但不能满足丰产作物的养分需求,在保持养分循环利用基础上根据土壤肥力适当施用化肥,可满足丰产作物的养分需求和平衡土壤养分收支,不致发生大量过剩N进入环境。  相似文献   

19.
Release of recombinant microbes into the environment necessitates an evaluation of their ability to transfer genetic material. The present report evaluates a method to detect conjugal DNA plasmid transfer in soil slurries under various environmental conditions. DonorPseudomonas cepacia containing pR388::Tn1721 andP. cepacia recipient cultures were coincubated in soil slurries containing autoclaved or natural soil and treated with one or more of 14 experimental conditions. Conjugal mating frequency (transconjugants per initial donor) ranged from 4.8×10–1 to 1.9×10–7. Highest numbers of transconjugants, 1.5×107 colony forming units/ml soil slurry, were observed following incubation at 35°C with an enriched nutrient supplement added to the soil. Low numbers of transconjugants, 103 colony forming units/ml soil slurry, were observed when mating pairs were subjected to low nutrient or pH stress even though initial donor and recipient populations were maintained at high levels. This test system provides a simple way to estimate effects of changing environmental factors on plasmid transfer rates and on the survival of recombinant microorganisms. By use of soil collected from sites proposed to receive genetically engineered microorganisms, preliminary risk assessments can be obtained regarding the potential for gene transfer and microorganism survival with this soil slurry test system.  相似文献   

20.
塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征   总被引:9,自引:0,他引:9  
生态化学计量学是研究生态过程和生态作用中化学元素平衡的科学。极端环境中进行植物叶片与土壤中营养元素含量及变化研究,对于揭示植物对营养元素的需要和当地土壤的养分供给能力,以及植物对环境的适应与反馈能力具有十分重要的意义。以塔克拉玛干沙漠腹地塔中植物园生长良好的25种人工植被及其生境为研究对象,运用方差分析、相关分析综合研究植物叶片及土壤的化学计量特征及其相互关系。结果显示:塔克拉玛干沙漠腹地25种人工植被叶片C、N、P的平均含量分别为(386.7±46.6)、(24.7±8.1)和(1.8±0.78) mg/g;叶片C:N、C:P及 N:P分别为(17.5±6.7)、(249.2±102.8)、(15.0±5.6)。其中豆科植物N含量极显著高于非豆科植物(P<0.001)。不同生活型植物的C、N、P含量均存在显著差异,C、N、P含量在3种生活型的大小顺序为草本>灌木>乔木。C:N和N:P在不同生活型植物间不存在显著差异(P>0.05),而乔木和灌木的C:P显著高于草本植物(P< 0.05)。相关分析表明植物的叶片C:N、C:P都与相应的N、P含量呈现极显著负相关性(P<0.001),而叶片N含量与P含量的变化并不相关(P> 0.05)。土壤C、N、P养分元素含量远低于全国的平均水平,尤其是N含量(<0.2 mg/g);土壤C与N存在着极显著的正相关关系(P<0.01),而C与P、N与P间的相关性并不显著(P>0.05)。以上研究结果表明,受极端环境的限制,塔克拉玛干沙漠人工植被植物对养分元素的利用效率显著低于全国陆地植物的平均水平,不同科和不同生活型功能群植物对环境的适应能力显著不同,表现出显著的养分适应策略差异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号