首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional properties of cytotoxic lymphocytes from patients with Vogt-Koyanagi-Harada disease ( VKH ) specific for human melanoma cells (P-36 melanoma cell line established from a patient with malignant melanoma) were investigated by using monoclonal antibodies specific for human T cell subsets. Peripheral blood lymphocytes (PBL) from patients with VKH showed significant cytotoxic activity against the P-36 (SK-MEL-28) human melanoma cell line, but not against a human cervical carcinoma of the uterus cell line (HeLa-S3 cell line) or against a mouse melanoma cell line (B-16 cell line) originating from a C57BL/6 strain mouse or against the EL-4 mouse lymphoma cell line from a C57BL/6 mouse. The cytotoxic activity of the patients' PBL against the P-36 melanoma cell line was markedly reduced by pretreatment of the PBL with monoclonal anti-human Leu-1 antibody plus rabbit complement, but it was reduced to much less extent by pretreatment with either monoclonal anti-human Leu-2a or Leu-3a antibody plus rabbit complement. The specific cytotoxic activity of the patients' PBL against the P-36 human melanoma cell line is, therefore, mediated by T cells bearing Leu-1+ Leu-2a+ or Leu-1+ Leu-3a+ antigens. Furthermore, the cytotoxic activity was shown to be blocked not only by anti-Leu-2a antibody specific to human cytotoxic/suppressor T cells but also unexpectedly by anti-Leu-3a antibody which has previously been considered to be specific to human inducer/helper T cells. The results of this study suggest that at least two distinct subpopulations of cytotoxic T cells specific for P-36 human melanoma cells are present in the peripheral blood of VKH patients. These cytotoxic T cells have different surface antigens, Leu-2a and Leu-3a.  相似文献   

2.
Regulation of the immune response in man is dependent on interactions between cells of helper/inducer (Leu-3+/T4+) lineage and cells of suppressor/cytotoxic (Leu-2+/T8+) lineage. By using the mixed leukocyte reaction (MLR) as a model system, we have shown previously that alloantigen-primed Leu-3+ cells induce autologous Leu-2+ cells to differentiate into suppressor T cells that specifically inhibit the response of fresh T cells to the original allogeneic stimulator cells. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of Leu-3+ cells distinguished from one another on the basis of their binding or lack of binding to monoclonal anti-Leu-8 antibody. Although both Leu-3+,8- and Leu-3+,8+ T cells proliferated in allogeneic MLR, alloactivated Leu-3+,8+ cells alone induced proliferation and differentiation of Leu-2+ suppressor cells. Leu-3+,8+ cells also induced Leu-3+,8- cells to proliferate, and following their activation in this manner, such autoactivated Leu-3+,8- cells augmented the differentiation of Leu-2+ suppressor cells, but only in the presence of alloactivated Leu-3+,8+ cells. Furthermore, this effect, like the suppressor effect, was specific for the inducer cells, and thus indirectly for the HLA-DR antigens of the original allogeneic stimulator cells as well. These results indicate that alloantigen-primed Leu-3+,8+ cells not only activate specific Leu-2+ suppressor cells but also activate specific Leu-3+,8- suppressor-amplifier cells, and in combination, these cells exert potent feedback inhibition of MLR.  相似文献   

3.
Patients with intractable rheumatoid arthritis (RA) were treated with total lymphoid irradiation (TLI, 2000 rad). We previously reported long-lasting clinical improvement in this group associated with a persistent decrease in circulating Leu-3 (helper subset) T cells and marked impairment of in vitro lymphocyte function. In the present experiments, we studied the mechanisms underlying the decrease in pokeweed mitogen stimulated immunoglobulin (Ig) secretion observed after TLI. Peripheral blood mononuclear cells (PBL) from TLI-treated patients produced 10-fold less Ig (both IgM and IgG) in response to pokeweed mitogen than before radiotherapy. This decrease in Ig production was associated with the presence of suppressor cells in co-culture studies. By using responder cells obtained from normal individuals (allogeneic system), PBL from eight of 12 patients after TLI suppressed Ig synthesis by more than 50%. In contrast, PBL from the same patients before TLI failed to suppress Ig synthesis. Suppression by post-TLI PBL was also demonstrated in an autologous system by using responder cells cryopreserved before TLI. Again, only cells obtained after TLI were suppressive in four of seven patients. PBL with suppressive activity contained suppressor T cells, and the latter cells bore the Leu-2 surface antigen. In 50% of the patients studied, suppressor cells were also found in the non-T fraction and were adherent to plastic. Interestingly, the Leu-2+ cells from TLI-treated patients were no more potent on a cell per cell basis than purified Leu-2+ cells obtained before TLI. Additional experiments suggested that the suppression mediated by T cells after TLI is related to the increased ratio of Leu-2 to Leu-3 cells observed after radiotherapy.  相似文献   

4.
We have shown previously that monoclonal antibodies to the Leu-2 and Leu-3 T cell antigens block the response of their respective subsets in allogeneic MLR. The present study was an effort to explore the mechanism of inhibition and to determine if anti-Leu-2 and anti-Leu-3 antibodies affect the responses to stimuli in addition to alloantigens. Our results indicate that antibodies to Leu-2 and Leu-3 have profound inhibitory effects on proliferation by their respective T cell subsets responding to a variety of stimuli, including specific soluble antigens and alloantigen. This effect was characterized by the following features: a) For optimal inhibition of proliferation, antibody must be present at the onset of antigenic stimulation. b) Inhibition is augmented by increasing the concentration of antibody or decreasing the concentration of antigen. c) Fab fragments of both anti-Leu-2a and anti-Leu-3a antibodies also block proliferation. In addition to their effects on T cell proliferation, anti-Leu-3 antibody blocked T cell-dependent lg synthesis induced in MLR, and anti-Leu-2 antibody prevented the induction, in vitro, of Leu-2+3- suppressor cells of lg synthesis. Taken together, these results suggest that antibodies to antigenic determinants on the Leu-2 and Leu-3 molecules competitively block segments of these structures that bind to alloantigen or nominal antigen. On the other hand, anti-Leu-2a antibody failed to block suppression of the MLR by in vivo activated, antigen-specific Leu-2+3- suppressor cells, which suggests that the Leu-2a epitope does not transmit antigen-specific signals from these differentiated suppressor T cells.  相似文献   

5.
This study was undertaken to characterize interactions among human T cell subpopulations involved in the generation of suppressor T cells specific for a soluble antigen. Purified PPD-primed Leu-3+ cells, when co-cultured for 7 days with fresh autologous Leu-2+ cells, induced differentiation of Leu-2+ but not Leu-3+ cells into specific suppressor T cells, which subsequently inhibited the proliferative response of fresh Leu-3+ cells to PPD but not to tetanus toxoid or allogeneic non-T cells. The PPD-specific suppressor effect of activated Leu-2+ cells was not due to altered kinetics of the PPD response and also extended to the secondary response of PPD-primed Leu-3+ cells. Furthermore, only those Leu-2+ cells that lacked the 9.3 marker, an antigen present on the majority of T cells including the precursors of cytotoxic T cells, differentiated into suppressor T cells. To analyze the inducer population, fresh Leu-3+ cells were separated into Leu-3+,8- and Leu-3+,8+ subpopulations with anti-Leu-8 monoclonal antibody, activated with PPD, and then were examined for inducer function. Although both Leu-3+,8- and Leu-3+,8+ cells proliferated in response to PPD and upon activation expressed comparable amounts of HLA-DR (Ia) antigens, the Leu-3+,8+ subpopulation alone induced Leu-2+ cells to become suppressor-effectors in the absence of PPD-pulsed autologous non-T cells. Once activated, however, Leu-2+ suppressor cells inhibited the PPD response of both Leu-3+,8- and Leu-3+,8+ cells. These results indicate that antigen-primed Leu-3+,8+ inducer cells can directly activate Leu-2+, 9.3- precursors of antigen-specific suppressor T cells in the absence of antigen-pulsed autologous non-T cells.  相似文献   

6.
To define the characteristics of T cells associated with the gastrointestinal tract, the phenotypes and immunoregulatory function of T cells from mesenteric lymph node (MLN) and lamina propria lymphocytes (LPL) were compared to peripheral blood (PBL) and spleen lymphocytes in normal nonhuman primates. Mesenteric lymph node lymphocytes were characterized by a higher proportion of Leu-3+(CD4+) and 9.3+(alpha-Tp44) lymphocytes and a lower proportion of Leu-2+(CD8) lymphocytes than lymphocytes in other sites. LPL and MLN lymphocytes were both characterized by a higher proportion of cells having the helper-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) compared to PBL. A lower proportion of cells with the suppressor-inducer phenotypes (Leu-3+, Leu-8+, Leu-3+, 2H4+) was found in LPL, but not in MLN lymphocytes compared to PBL. In studies of the Leu-2+ T cells, it was found that whereas PBL, spleen, and LPL contained approximately equal proportions of Leu-2+, Leu-15+ (suppressor phenotype) and Leu-2+, 9.3+ lymphocytes (cytolytic T-cell phenotype), the MLN T cells were predominantly Leu-2+, 9.3+. Furthermore, the Leu-3/Leu-2 ratio was significantly higher in MLN compared to other sites. In pokeweed mitogen-stimulated cultures, the highest helper function for Ig synthesis was found in MLN. Cells from none of the sites studied showed evidence of increased suppressor cell activity. These results show that MLN and LPL T cells in normal nonhuman primates differ from T cells in peripheral blood and spleen. While both MLN and LPL have a high proportion of T cells with the helper-inducer phenotype, cells with the suppressor-effector phenotype are infrequent in MLN, while cells with the suppressor-inducer phenotype are infrequent in LPL.  相似文献   

7.
Induction of CD4 suppressor T cells with anti-Leu-8 antibody   总被引:6,自引:0,他引:6  
To characterize the conditions under which CD4 T cells suppress polyclonal immunoglobulin synthesis, we investigated the capacity of CD4 T cells that coexpress the surface antigen recognized by the monoclonal antibody anti-Leu-8 to mediate suppression. In an in vitro system devoid of CD8 T cells, CD4, Leu-8+ T cells suppressed pokeweed mitogen-induced immunoglobulin synthesis. Similarly, suppressor function was induced in unfractionated CD4 T cell populations after incubation with anti-Leu-8 antibody under cross-linking conditions. This induction of suppressor function by anti-Leu-8 antibody was not due to expansion of the CD4, Leu-8+ T cell population because CD4 T cells did not proliferate in response to anti-Leu-8 antibody. However, CD4, Leu-8+ T cell-mediated suppression was radiosensitive. Finally, CD4, Leu-8+ T cells do not inhibit immunoglobulin synthesis when T cell lymphokines were used in place of helper CD4 T cells (CD4, Leu-8- T cells), suggesting that CD4 T cell-mediated suppression occurs at the T cell level. We conclude that CD4 T cells can be induced to suppress immunoglobulin synthesis by modulation of the membrane antigen recognized by anti-Leu-8 antibody.  相似文献   

8.
The Leu-2 antigen is expressed on a subpopulation of human T cells that perform suppressor and cytotoxic functions. In addition, this antigen is also present on a portion of cells with morphologic characteristics of granular lymphocytes. Although both Leu-2+ cells and granular lymphocytes have been shown to suppress B cell differentiation, the interrelationship of these two suppressor populations has not previously been fully characterized. We recently produced a monoclonal antibody, termed D12 (anti-Leu-15), which reacts with a variety of cell types, including a subpopulation of Leu-2+ cells. Previous studies have indicated that the Leu-2+ cells that suppress T cell proliferative responses express the Leu-2+15+ phenotype, whereas the precursor and effector cytotoxic T cells that recognize class I major histocompatibility antigens are Leu-2+15- lymphocytes. For this report, we used the anti-Leu-2 and anti-Leu-15 monoclonal antibodies and fluorescence-activated cell sorter techniques to characterize the E+ cells that suppress PWM-induced B cell differentiation. These studies indicate that the vast majority of Leu-2+ cells that suppress this T cell-dependent B cell response have the Leu-2+15+ phenotype. Furthermore, when the morphologic and cytochemical characteristics of these Leu-2+15+ cells were studied, virtually all of these cells were granular lymphocytes. Most of the Leu-2+15+ suppressor cells co-expressed the HNK-1 (Leu-7) antigen, which is detected only on granular lymphocytes. In contrast, virtually none of the Leu-2+15+ granular lymphocytes expressed Fc receptors for IgG molecules. These data indicate that the Leu-2+ cells that suppress PWM-induced B cell differentiation are Leu-2+15+ (and predominantly Leu-7+) granular lymphocytes that do not express Fc receptors. The implications of these observations concerning the relationship of human Leu-2+ suppressor cells to murine Ly-2+ cells and the lineage of granular lymphocytes are discussed.  相似文献   

9.
The antigenic phenotype of individual PHA-induced T lymphocyte colonies was studied with a direct immunofluorescence technique using fluorescein-labeled anti-Leu-2a and anti-Leu-3a antibodies. Of the colonies grown from mononuclear peripheral blood cells 85% were Leu-3a+ (inducer/helper phenotype), 12% were Leu-2a+ (suppressor/cytotoxic phenotype), and 3% contained equal numbers of Leu-2a+ and Leu-3a+ cells. Fluorescence-activated cell sorter (FACS) separated T-cell subsets showed that Leu-2a+ cells and Leu-3a+ cells form exclusively Leu-2a+ and Leu-3a+ colonies, respectively. Leu-3a+ cells formed colonies in both the absence and presence of conditioned medium (PHA-CM), whereas colony formation by Leu-2a+ cells was absolutely dependent on PHA-CM. Mixing experiments with FACS-separated T-cell subsets showed that Leu-2a+ cells inhibit colony formation by Leu-3a+ cells in a cell dose-dependent manner both in the presence and absence of PHA-CM. Phenotype analysis of individual colonies from mixing experiments strongly suggested monoclonal proliferation in the present colony assay system. The majority of expanded T-cell colonies showed helper activity in a reverse hemolytic plaque-forming B-cell assay, although to a lesser degree as compared to that of freshly isolated T lymphocytes.  相似文献   

10.
Peripheral blood leukocytes (PBL) from noninstitutionalized individuals with trisomy 21, paired with closely age-matched and/or family members as controls, were analyzed for different aspects of their cellular and humoral immune responses, and were phenotypically characterized by means of various monoclonal antibodies. Both the in vitro PBL proliferative and antibody responses to a bacterial antigen (tetanus toxoid) and to viral antigens (influenza A/Bangkok and B/Singapore) were significantly decreased in trisomy 21. In addition, bacterial and viral antigen-induced in vitro interleukin 2 (IL 2) production was markedly reduced, although mitogen (PHA)-stimulated IL 2 production was not impaired. The functional abnormalities observed in trisomy 21 PBL occur concomitantly with numerical alterations in circulating lymphocyte subsets in these same individuals. Although no difference was observed between the trisomic and control groups in the percentage of total T and B lymphocytes, a decreased level of Leu-3a + 3b-positive cells (T helper/inducer cells) and an increased level of Leu-2a-positive cells (T suppressor/cytotoxic cells) that co-expressed Leu-15 (suppressor alone) were noted.  相似文献   

11.
Although Leu-2+ (OKT8+) T cells activated in the mixed lymphocyte reaction (MLR) mediate both alloantigen-specific cytotoxicity and suppression of alloantigen-induced proliferation, it is not known whether these functions derive from a single cell type or phenotypically distinct cells. This study was undertaken to examine the alloantigen-specific cytolytic and suppressor potential of two subpopulations of Leu-2+ cells distinguishable from one another on the basis of their binding to the monoclonal antibody 9.3. Leu-2+, 9.3+ and Leu-2+, 9.3- populations were purified from peripheral blood, cultured for 7 days with autologous helper/inducer (Leu-3+) cells and allogeneic non-T cells, and reisolated before testing for cytotoxicity and suppression. All detectable alloantigen-specific cytolytic activity was confined to the Leu-2+, 9.3+ subpopulation. Killing by this subset was specific for the HLA-A and B (class I) major histocompatibility complex (MHC) antigens of the priming cell. By contrast, suppression of proliferation was mediated predominantly by the Leu-2+, 9.3- cells, and suppression by this subpopulation was specific for the HLA-DR (class II) MHC antigens of the priming cell. The development of suppression by Leu-2+, 9.3- cells was unaffected by cyclosporin A (CsA), an agent shown previously to block the development of cytolytic but not suppressor cells in MLR. Alloactivated Leu-2+, 9.3+ cells were slightly inhibitory of fresh MLR, but this effect as well as the development of cytolytic cells was completely abrogated by CsA. These results indicate that suppressor and cytolytic Leu-2+ T cells activated in MLR are derived from distinct precursors separable by antibody 9.3.  相似文献   

12.
Peripheral blood lymphocytes (PBL) from patients with herpes simplex virus (HSV)-1 recurrences in the cornea only (Group I) exhibited reduced lysis of HSV-1-infected targets compared to PBL from patients with oral-facial and corneal HSV recurrences (Group II). The cytotoxic lymphocytes appeared to belong to a subpopulation of natural killer (NK-HSV) cells. Monoclonal antibodies to human lymphocyte differentiation antigens were used to define the surface phenotype of the NK-HSV cells. Most of the NK-HSV activity was mediated by lymphocytes expressing the surface markers Leu-7+ (HNK-1), OKT3+ (pan T), OKM1+ (myeloid and NK), Leu-2? (cytotoxic/ suppressor T cell), and Leu-8? (regulatory T cell). In contrast, lysis of K562 cells (NK-K562) was mediated by lymphocytes bearing the surface phenotype Leu-7+, OKT3?, OKM1+, Leu-2+/?, and Leu-8?. The low level of NK-HSV activity in PBL from Group I donors appeared to be due to active suppression by suppressor T lymphocytes. Depletion of Leu-2+ cells from PBL of Group I donors resulted in significant augmentation of NK-HSV activity. Similar treatment of PBL from Group II donors either had no effect or slightly diminished the NK-HSV activity.  相似文献   

13.
We showed previously that fresh Leu-2+ T cells respond to autologous antigen-primed Leu-3+ T cells by proliferation and differentiation into suppressor T cells (Ts) that specifically inhibit the response of fresh Leu-3+ cells to the original priming antigen. This study was undertaken to characterize the role of various cell surface molecules expressed by antigen-primed Leu-3+ cells in their activation of Leu-2+ Ts cells. Alloactivated Leu-3+ blasts were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct antigens on human lymphoid cells, and then were examined for their functional effects on fresh autologous T cells. Prior treatment of Leu-3+ blasts with anti-Leu-4 or anti-HLA-A,B,C framework antibodies, but not with anti-Leu-1, anti-Leu-3, anti-Leu-5, or anti-HLA-DR framework-specific antibodies, not only blocked proliferation of fresh Leu-2+ cells, it also prevented their differentiation into Ts cells. Furthermore, after their activation by Leu-3+ blasts, Leu-2+ Ts cells inhibited the response of fresh Leu-3+ cells from only those individuals who shared HLA-A,B phenotypes with suppressor-effector cells. These results suggest that both the inductive and effector phases of suppression involve dual recognition of autologous class I MHC molecules and structures associated with the Leu-4 (T3) molecule on the surface of antigen-reactive Leu-3+ cells.  相似文献   

14.
Patients with myeloma have a depressed capacity to respond to antigenic challenge. Studies in this laboratory have previously described an unclassified lymphoid cell which binds human erythrocytes coated with human immunoglobulin G (IgG) anti-D antibody (EA) as important in the inhibition of Ig synthesis in myeloma patients. Using monoclonal antibodies, two-color fluorescence studies, and flow cytometry, we characterized this EA cell as a Leu-1+ (cluster designation (CD) 5), Leu-12+ (CD 19), Leu-16+ (CD 20), B2+ (CD 21), Leu-14+ (CD 22), and HLA-DR+ B cell. The cell was negative for antibodies to Leu-2 (CD 8), Leu-3 (CD 4), Leu-4 (CD 3), Leu-5 (CD 2), Leu-7, Leu-8, Leu-11 (CD 16), Leu-M1 (CD 15), Leu-M3, and CALLA (CD 10). This profile is consistent with a Leu-1+ B cell and excludes a T cell, natural killer cell, and monocyte. Comparison of the relative role of these cells to the role of monocytes in the suppression of pokeweed mitogen-stimulated Ig synthesis was determined in serial studies on 19 myeloma patients. The mean (+/- SEM) percentage of inhibition of Ig synthesis by monocytes from stage I myeloma patients was 14 +/- 2.2%, from stage II patients was 37 +/- 3.5%, and from stage III patients was 51 +/- 4.7%. Inhibition of Ig synthesis by Leu-1+ EA cells was 46 +/- 1.5%, 48 +/- 1.6%, and 43 +/- 3.7% in stage I, II, and III patients, respectively. Immunosuppressive B cells are an important component of inhibition of Ig synthesis in the immunodeficiency of myeloma.  相似文献   

15.
Monoclonal antibodies reactive with T cells, T cell subsets, B cells, monocytes, and natural killer cells were used to characterize the nature of mucosal lymphocytes in the human small intestine by application of the immunoperoxidase technique to tissue sections for light and electron microscopic examination. In addition, for comparison, peripheral blood mononuclear cells (PBL) were studied by immunoelectron microscopy. Most of the intraepithelial lymphocytes (IEL) were T cells (Leu-1+, T3+) and expressed the phenotype associated with cytotoxic/suppressor T cells (Leu-2a+, T8+). In contrast, a majority of T lymphocytes in the lamina propria expressed the phenotype associated with helper/inducer T cells (Leu-3a+, T4+). These observations confirm and extend the findings previously reported. In addition, a small number of cells in the lamina propria with the ultrastructural features of macrophages were found to react with anti-Leu-3a and anti-T4 antibodies. Although many IEL contained cytoplasmic granules and had ultrastructural features similar to those of circulating granular lymphocytes, none of these cells reacted with anti-Leu-7 (HNK-1), anti-T10, or anti-M1 antibodies. This suggests that IEL may not be related to circulating large granular lymphocytes, which are Leu-7+, T10+, M1+ and are associated with natural killer activity. Not only Leu-7+ PBL, but T8+, T4+, or T3+ mucosal lymphocytes or PBL also may contain cytoplasmic granules. Therefore, the cytoplasmic granules are not restricted to one cell type, in particular, to Leu-7+ cells.  相似文献   

16.
Human T cell clones cytotoxic for autologous sarcoma cell lines have been developed from patient JM with an osteogenic sarcoma, and from patients EG and RM with malignant fibrohistiocytoma. These clones were derived from the cocultivation of peripheral blood lymphocytes (PBL) with the respective patient's autologous irradiated established tumor cell lines (AIT). After two cycles of stimulation for 5 days in bulk culture, these "educated" lymphocytes were seeded at a density of 1 X 10(6) cells/well in 24-well plates and were cultured in the presence of highly purified natural IL 2 and AIT, the latter serving as a feeder layer. Cell numbers were reduced from the initial seeding density by one log each week until reaching a density of 10(2) cells. These cells were found to be stable in viability and cytotoxic activity, after which limiting dilution was then performed. Within 4 to 6 wk, clones were isolated with unique specificities. These clones were capable of proliferating to a total density of 10(9) cells/ml and maintained their specific cytotoxicity for more than 6 mo. Testing with a panel of target cells of various histotypes, cold-target inhibition assays, and blocking of cytotoxicity with anti-HLA monoclonal antibodies showed that the T cell clones recognize a common sarcoma-associated antigen and that the lysis is HLA restricted. Phenotypically, cytotoxic clones derived from JM were Leu-1+, Leu-2+, and Leu-3-, whereas those derived from EG exhibited either Leu-24 or Leu-3+ markers, the latter phenotype lacking cytotoxicity. RM exhibited mainly Leu-3+ clones with strong cytotoxicity. All were HNK-1- and HLA class II+, with less than 1% of cells of each clone stained by anti-TAC monoclonal antibody. The clones from each patient did not lyse autologous or allogeneic PBL, mitogen-induced T lymphoblasts, normal fibroblasts, cells isolated from benign neoplasms, carcinoma cells, Daudi B lymphoid cells, or K562 cells. With the exception of EG, all clones produced immune interferon in a range from 12 to 50 U/ml. The generation of long-term specific T cell clones can be used to further dissect the cellular immune response to sarcomas. Cytotoxic T cell clones have potential application for tumor immunotherapy.  相似文献   

17.
Human T lymphocytes and monocytes bear the same Leu-3(T4) antigen   总被引:15,自引:0,他引:15  
An analysis of the cellular distribution, biosynthesis, and structure of the human T lymphocyte antigen Leu-3(T4) was performed. By using a sensitive ELISA as well as FACS analysis, relative quantities of the Leu-3(T4) antigen from whole cell lysates and from cell surfaces of six cell lines were determined. The T-T hybrid cell line 255.88, and the monocyte/macrophage cell line U937, proved to be high producers of the antigen and were chosen for additional investigation. The Leu-3(T4) antigens from the T lymphocyte cell line and the monocyte/macrophage cell were shown to be identical by SDS-PAGE. Leu-3(T4) was a polypeptide of 55,000 AMW under reducing conditions, and 63,000 AMW under nonreducing conditions. In the 255.88 cell line, a second band of 41,000 AMW was associated with the true Leu-3(T4) molecule. The 55,000 AMW Leu-3(T4) molecule was shown to possess a high mannose sugar side chain, and to contain few accessible tyrosine residues. These studies demonstrate that human T lymphocytes and monocytes produce and process similar molecules that react with the anti-Leu-3(T4) monoclonal antibody. They also characterize this important associative antigen recognition structure and suggest that cells other than the T lymphocyte may be targets for the retrovirus HTLV-III.  相似文献   

18.
We showed previously that T cells with the phenotype Leu-3+,8+ are required for the induction of antigen-specific Leu-2+ suppressor cells. Furthermore, when mixed lymphocyte reactions are carried out in the presence of 1 microgram/ml cyclosporin A (CsA), such cultures lead preferentially to the activation of alloantigen-specific suppressor-inducer Leu-3+,8+ cells. In an attempt to generate a clone of T cells with such specific suppressor-inducer properties, we activated Leu-3+,8+ T cells with allogeneic (HLA-DR4+) lymphocytes in the presence of CsA. Clone SP-21, derived by propagating such activated T cells with conditioned medium containing IL 2, is a noncytotoxic, nonsuppressor clone that specifically proliferates to allogeneic cells bearing HLA-DR4 antigen. When cultured with fresh autologous Leu-2+ cells in the absence of HLA-DR4+ cells, clone SP-21 selectively activates Leu-2+ suppressor cells, which inhibit the response of fresh Leu-3+ cells to DR4+ stimulator cells. On the other hand, clone SP-21 fails to induce cytolytic T cells or to help B cell differentiation. These results demonstrate that a T cell clone with a remarkably narrow functional repertoire nonetheless contains and transmits all of the signals necessary for the activation of antigen-specific suppressor cells.  相似文献   

19.
When cultured with autologous antigen-primed Leu-3+ lymphoblasts, Leu-2+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the responses of fresh autologous Leu-3+ cells to the priming antigen. We have shown previously that the Leu-4/T3 (CD-3) molecular complex and HLA-A,B molecules on the surface of Leu-3+ inducer blasts are recognized by Leu-2+ Ts during their differentiation. This study examines the role of various cell surface molecules expressed by Leu-2+ Ts during the inductive and effector phases of suppression. Leu-2+ cells were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct human lymphoid antigens either before or after their activation with alloantigen-primed Leu-3+ blasts. Antibodies to Leu-2/T8 (CD-8) and lymphocyte function-associated antigen-1 (LFA-1) (CDw-18) molecules inhibited not only the generation but also the effector function of Leu-2+ Ts. Although antibodies to Leu-4/T3 (CD-3) and Leu-5/T11 (CD-2) molecules caused profound inhibition of the activation of Ts, these antibodies failed to inhibit the effector function of Ts. On the contrary, anti-Leu-4 antibody consistently augmented the suppressor effect of Ts. Antibodies directed against Leu-1/T1 (CD-5), Leu-3/T4 (CD-4), LFA-3, and class I (HLA-A,B,C) and class II (HLA-DR,DQ) major histocompatibility complex molecules had no effect on either the generation or the effector function of Ts. These results suggest the involvement of Leu-2/T8 (CD-8), Leu-4/T3 (CD-3), Leu-5/T11 (CD-2), and LFA-1 (CDw-18) molecules on the surfaces of Leu-2+ cells in the activation and effector functions of Ts.  相似文献   

20.
Previous studies have shown that monoclonal anti-Leu-8 antibody identifies functionally distinct subpopulations within both the Leu-2 (T8+) and Leu-3 (T4+) lineages of human T lymphocytes. We now report in detail on the tissue distribution of the Leu-8 antigen and on extensive functional studies of T cells subsets distinguished by their expression or lack of expression of this marker. Leu-8 is present on a wide variety of hematologic cells, including granulocytes, T and B lymphocytes, monocytes, and null or NK cells. Within lymph nodes and tonsils, Leu-8 is absent from both B and T cells within germinal centers but is present on nearly all paracortical lymphocytes. Leu-8 is present on most but not all EBV-transformed B cell lines, reflecting its presence on a subset of normal peripheral blood B cells. None of six malignant T cell lines tested were Leu-8+, whereas most circulating T cells are Leu-8+. Although standard immunoprecipitation techniques failed to demonstrate any specific bands on SDS polyacrylamide gels, the antigenic determinant recognized by anti-Leu-8 is protein or protein-associated, because brief treatment of target cells with pronase abrogated binding of anti-Leu-8. Both Leu-3+8+ and Leu-3+8- cells proliferated in response to several soluble antigens and to autologous and allogeneic non-T cells. Nonetheless, nearly all of the helper T cells for PWM- and AMLR-induced PFC were contained within the Leu3+8- subset. Optimal suppression of the PWM-induced PFC response required both Leu-2+8+ and Leu-2+8- cells, and irradiation of either subset with 3000 R abrogated the capacity of the recombined subsets to effect suppression. In contrast to help for B cell differentiation, both Leu-3+8+ and Leu-3+8- cells were capable of amplifying the development of allospecific T killer cells; precursor and effector T killer cells could be found within both Leu-2+8+ and Leu-2+8- subpopulations. The correlation between Leu-8 phenotype and selected immune functions of T cells (and B cells; see companion paper) indicates that anti-Leu-8 distinguishes important immunoregulatory T and B lymphocyte subsets in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号