首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A type II restriction endonuclease, CviBI, was isolated from a eukaryotic, Chlorella-like green alga infected with the dsDNA containing virus NC-1A. The enzyme recognizes the sequence GANTC and cleaves DNA between the G and A. Methylation of deoxyadenosine in the GANTC sequence probably inhibits enzyme activity. In vitro CviBI cleaves host nuclear DNA but not viral DNA. A survey of 18 other viruses which infect the same Chlorella sp. revealed that infection with 5 of these viruses also induced a restriction endonuclease which cleaves DNA into the same size fragments as CviBI.  相似文献   

2.
A DNA methyltransferase was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1. The enzyme recognized the sequence GATC and methylated deoxyadenosine solely in GATC sequences. Host DNA, which contains GATC sequences, but not PBCV-1 DNA, which contains GmATC sequences, was a good substrate for the enzyme in vitro. The DNA methyltransferase activity was first detected about 1 h after viral infection; PBCV-1 DNA synthesis and host DNA degradation also began at about this time. The appearance of the DNA methyltransferase activity required de novo protein synthesis, and the enzyme was probably virus encoded. Methylation of DNAs with the PBCV-1-induced methyltransferase conferred resistance of the DNAs to a PBCV-1-induced restriction endonuclease enzyme described previously (Y. Xia, D. E. Burbank, L. Uher, D. Rabussay, and J. L. Van Etten, Mol. Cell. Biol. 6:1430-1439). We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

3.
A site-specific endonuclease was isolated from a eukaryotic Chlorella-like green alga infected with the dsDNA-containing virus NYs-1. The enzyme recognizes the sequence 5'-CC-3' and cleaves 5' to the first C. It cleaves 5'-CmC-3' sequences but not 5'-mCC-3' sequences. The enzyme creates breaks in dsDNA whenever two 5'-CC-3' sequences on opposite strands are close enough for the two strands to separate; when the 5'-CC-3' sequences on opposite strands are further apart only a portion of the strands separate. Consequently, NYs-1 endonuclease does not produce a completely stable DNA digestion pattern. The enzyme probably does not cleave ssDNA and definitely does not cleave ssRNA or dsRNA.  相似文献   

4.
A type II restriction endonuclease, named CviJI, was isolated from a eukaryotic Chlorella-like green alga infected with the dsDNA containing virus IL-3A. CviJI is the first restriction endonuclease to recognize the sequence PuGCPy; CviJI cleaves DNA between the G and C. Methylation of the cytosine in PuGCPy sequences prevents cleavage by CviJI. CviJI cleaved DNA into smaller but defined fragments in the presence of ATP. This "star" activity was stimulated by dithiothreitol and/or S-adenosylmethionine but did not occur under conditions which favor "star" activity of other restriction endonucleases.  相似文献   

5.
The genomic DNAs of the eukaryotic Chlorella-like green alga, strain NC64A, and eleven of its viruses all contain significant levels of 5-methyldeoxycytidine. In addition, the host DNA as well as six of the viral DNAs also contain N6-methyldeoxyadenosine. At least some of the methylated bases in the host reside in different base sequences than the methylated bases in the viruses as shown by differential susceptibility to restriction endonuclease enzymes. This suggests that the viruses encode for DNA methyltransferases with sequence specificities different from that of the host enzyme.  相似文献   

6.
Mitochondrial (mt) DNA from the unicellular, exsymbiotic Chlorella-like green alga, strain Nla was isolated and cloned. The mtDNA has a buoyant density of 1.692 g/ml in CsCl and an apparent G/C base composition of 32.5%. The genome contains approximately 76 kbp of DNA based on restriction fragment summation and electron microscopic measurements. A map of restriction endonuclease sites using Sst I, Bam I, Sal I and Xho I was generated. The genome maps as a circular molecule and appears as such under the electron microscope. Eight genes were assigned to the map by hybridization to specific restriction fragments using heterologous mt-encoded specific probes. These include the genes for subunits 6, 9, and alpha of the F0-F1 ATPase complex, the large and small subunit rRNAs, cytochrome oxidase subunits I and II, and apocytochrome b.  相似文献   

7.
The virus PBCV-1, which replicates in a Chlorella-like green alga, has a dsDNA genome. The DNA was mapped for BamHI, HindIII, and PstI restriction sites. The resulting map has a size of 333 kbp and is circular—indicating either covalently closed circular DNA or circularly permuted linear DNA. Several regions of repetitive DNA were also identified and located on the restriction map.  相似文献   

8.
Chloroplast DNA was isolated and cloned from Chlorella, strain N1a, exsymbiotic with Paramecium bursaria. BamHI, SalI, SstI, KpnI and XhoI restriction fragments of the DNA were assembled into a circular map. The genome consists of approximately 120 kbp of DNA, has a G/C content of 38%, and contains only a single copy of the rRNA cistron. The rRNA cistron is small, 5000–8000 bp, and the 16S and 23S genes are separated by less than 2000 bp.  相似文献   

9.
C K Ho  J L Van Etten    S Shuman 《Journal of virology》1997,71(3):1931-1937
We report that Chlorella virus PBCV-1 encodes a 298-amino-acid ATP-dependent DNA ligase. The PBCV-1 enzyme is the smallest member of the covalent nucleotidyl transferase superfamily, which includes the ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes. The specificity of PBCV-1 DNA ligase was investigated by using purified recombinant protein. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km, 75 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. PBCV-1 ligase was unable to ligate across a 2-nucleotide gap and ligated poorly across a 1-nucleotide gap. A native gel mobility shift assay showed that PBCV-1 DNA ligase discriminated between nicked and gapped DNAs at the substrate-binding step. These findings underscore the importance of a properly positioned 3' OH acceptor terminus in substrate recognition and reaction chemistry.  相似文献   

10.
Restriction endonuclease cleavage map of the DNA of JC virus.   总被引:2,自引:0,他引:2       下载免费PDF全文
A physical map of the sites cleaved by the following restriction endonucleases was derived for the DNA of JC virus, a human polyomavirus: EcoRI, HpaI, and PstI (one site each); HindII (four sites); and HindIII (three sites). By agarose gel electrophoresis of fragmented DNA, the size of full-length DNA of JC virus was estimated to be 5,125 +/- 105 base pairs (98 +/- 2% of the length of simian virus 40 DNA).  相似文献   

11.
12.
13.
Chlorella virus PBCV-1 topoisomerase II is the only functional type II enzyme known to be encoded by a virus that infects eukaryotic cells. However, it has not been established whether the protein is expressed following viral infection or whether the enzyme has any catalytic features that distinguish it from cellular type II topoisomerases. Therefore, the present study characterized the physiological expression of PBCV-1 topoisomerase II and individual reaction steps catalyzed by the enzyme. Results indicate that the topoisomerase II gene is widely distributed among Chlorella viruses and that the protein is expressed 60-90 min after viral infection of algal cells. Furthermore, the enzyme has an extremely high DNA cleavage activity that sets it apart from all known eukaryotic type II topoisomerases. Levels of DNA scission generated by the viral enzyme are approximately 30 times greater than those observed with human topoisomerase IIalpha. The high levels of cleavage are not due to inordinately tight enzyme-DNA binding or to impaired DNA religation. Thus, they most likely reflect an elevated forward rate of scission. The robust DNA cleavage activity of PBCV-1 topoisomerase II provides a unique tool for studying the catalytic functions of type II topoisomerases.  相似文献   

14.
A virus PBCV-1, which infects certain fresh water algae and has been shown by transmission and cryo-electron microscopy to exist as a triskaidecahedron, was imaged using atomic force microscopy (AFM). From AFM the particles have diameters of about 190nm and the overall structure is in all important respects consistent with existing models. The surface lattice of the virion is composed of trimeric capsid proteins distributed according to p3 symmetry to create a honeycomb arrangement of raised edges forming quasi-hexagonal cells. At the pentagonal vertices are five copies of a different protein forming an exact pentagon, and this has yet another unique protein in its center. The apical protein exhibits some unusual mechanical properties in that it can be made to retract into the virion interior when subjected to AFM tip pressure. When PBCV-1 virions degrade, they give rise to small, uniform, spherical, and virus like particles (VLP) consistent with T=1 or 3 icosahedral products. Also observed upon disintegration are strands of linear dsDNA. Fibers of unknown function are also occasionally seen associated with some virions.  相似文献   

15.
A detailed restriction map was deduced for the genome of the exogenous bovine leukemia virus. The cleavage sites for nine restriction enzymes were mapped. The unintegrated linear viral DNA intermediate that is produced by infection of permissive cells with bovine leukemia virus was isolated. The linear viral DNA had a unique restriction map, indicating that it is not a set of random circular permutations of the RNA genome. From hybridization with a 3'-enriched probe, the DNA restriction map was aligned relative to the 5'-to-3' orientation of the viral RNA. Restriction enzyme analysis of integrated bovine leukemia virus information present in animals with enzootic bovine leukosis provided evidence for the existence of genetic variants of the virus.  相似文献   

16.
A pure culture of the green eukaryotic alga Chlorococcum sp. and a virus infectious for it were isolated. Infection of the culture leads to the destruction of most of the cells, although complete destruction of the culture is not usually observed. The virus particles are similar in morphology to bacteriophage and consist of a hexagonal head 220 nm long and 180 nm wide and a tail which is inside the head in a majority of the particles, but which is on the outside in some. The virus is not adsorbed on the cell membranes, but evidently penetrates into the zoospores through the flagellar channels, where particles of it are regularly found. Destruction of the nucleus and membrane structures of the cytoplasm occurs during growth of the virus, but the chloroplasts and mitochondria are retained. The membranes of infected cells are partially destroyed and the virus particles are released into the medium. The virus is designated as PLVCH (L)--page-like virus of Chlorococcum.  相似文献   

17.
A second DNA site-specific (restriction) endonuclease (R.CviAII) and its cognate adenine DNA methyltransferase (M.CviAII) were isolated from virus PBCV-1 infected Chlorella strain NC64A cells. R.CviAII, a heteroschizomer of the bacterial restriction endonuclease NlaIII, recognizes the sequence CATG, and does not cleave CmATG sequences. However, unlike NlaIII, which cleaves after the G and does not cleave either CmATG or mCATG sequences, CviAII cleaves between the C and A and is unaffected by mCATG methylation. The M.CviAII and R.CviAII genes were cloned and their DNA sequences were determined. These genes are tandemly arranged head-to-tail such that the TAA termination codon of the M.CviAII methyltransferase gene overlaps the ATG translational start site of R.CviAII endonuclease. R.CviAII is the first chlorella virus site-specific endonuclease gene to be cloned and sequenced.  相似文献   

18.
Restriction endonuclease NciI is not blocked by CpG methylation.   总被引:1,自引:1,他引:0       下载免费PDF全文
R R Meehan  E Ulrich    A P Bird 《Nucleic acids research》1993,21(23):5517-5518
  相似文献   

19.
The production of ketocarotenoids (KCs) from Chlorococcum sp. strain MA-1 was investigated by a two-step process. In the first step, 18 g biomass l(-1) was achieved by feeding glucose to the heterotrophic cultures; in the second step, the high-density cultures were treated with light illumination or chemical stress in dark, respectively, to induce KC synthesis. Light-treated cultures could produce 103 mg total KCs l(-1) and 32 mg astaxanthin l(-1), three times higher than those from chemical-treated cultures, in the 10 days of induction. The percentages of individual KCs (hydroxyechinenone, canthaxanthin, adonirubin and astaxanthin) in the total KCs were not markedly influenced by the different stress conditions. The developed two-step process provides a feasible strategy for commercial production of ketocarotenoids by the green microalga, Chlorococcum sp. strain MA-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号