首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

2.
Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside with lithium dimethyl cuprate gave methyl 2,5-dideoxy-2-C-methyl-α-d-arabinofuranoside (54% yield) and methyl 3,5-dideoxy-3-C-methyl-α-d-xylofuranoside (10%). The former was converted into its 3-O-acetyl and 3-O-benzyl derivatives, which, upon acid hydrolysis, afforded 3-O-acetyl- and 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinofuranose in 60–75% overall yield. Treatment of the 3-O-benzyl compound with ethanethiol in the presence of trifluoromethanesulfonic acid afforded 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinose diethyl dithioacetal (20%) and ethyl 3-O-benzyl-2,5-dideoxy-2-C-methyl-1-thio-α-d-arabinoside (73%). The former, which was also available from the latter by equilibration in acidic ethanethiol, was acetylated at O-4 and the product converted into the corresponding dimethyl acetal (85% overall yield). This compound was, after debenzylation, hydrolyzed with acid, to provide 4-O-acetyl-2,5-dideoxy-2-C-methyl-d-arabinose in 70% overall yield.  相似文献   

3.
《Carbohydrate research》1987,171(1):125-139
2,3,5-Tri-O-methyl-d-ribofuranosyl flouride (6), 2,3-di-O-benzyl-5-O-methyl-d-ribofuranosyl fluoride (7), and 5-O-benzyl-2,3-di-O-methyl-d-ribofuranosyl fluoride (8) were obtained in 57 (, 15; and , 42), 87 (, 22; and , 65), and 85.5 (, 35.5; and , 50%) yields, respectively, from the corresponding OH-1 derivatives by the reaction with N,N-diethyl-1,1,2,3,3,3-hexafluoropropylamine, adduct of hexafluoropropene with diethylamine. These fluorides and 2,3,5-tri-O-benzyl-d-ribofuranosyl fluoride (5) reacted with isopropenyl trimethylsilyl ether, (Z)-1-ethyl-1-propenyl trimethylsilyl ether, and allyltrimethylsilane, in the presence of boron trifluoride·diethyl etherate to give the corresponding 1-d-ribofuranosyl-2-propanones, 2-d-ribofuranosyl-3-pentanones, and 3-d-ribofuranosyl-1-propenes in good yields. C-Acetonylation was confirmed to afford the α-d anomer as the initial product, and the α-d anomer was isomerized into the corresponding β-d anomer to give a mixture. The C-allylation reaction gave only the α-d anomer. C-Pentanonylation, however, gave a mixture of diastereoisomers that could not be isolated. All reactions afforded almost the same results starting with either α- or β-d-ribofuranosyl fluoride. No reaction of the β anomer of 5 with 1-isopropyl-2-methyl-1-propenyl trimethylsilyl ether took place.  相似文献   

4.
The metabolism of several ring C and D-functionalized ent-kaur-16-en-19-oic acids by cultures of Gibberella fujikuroi, mutant B1-41a, to the corresponding derivatives of the normal fungal gibberellins (GAs) and ent-kaurenoids is described. A range of 12α- and 12β-hydroxyGAs and ent-kaurenoids are characterized by their mass spectra and GC Kovats retention indices. The mass spectral and GC data are used to identify the 12α-hydroxy derivatives of GA12, GA14, GA37 and GA4 (GA58), and of the 12β-hydroxy derivatives of ent-7α-hydroxy- and ent-6α, 7α-dihydroxykaurenoic acids, in seeds of Cucurbita maxima. Similarly the metabolites of GA9, formed in seeds of Pisum sativum and cultures of G.fujikuroi, mutant B1-41a, are identified as 12α-hydroxyGA9. ent-11β-Hydroxy- and ent-11-oxo-kaurenoic acids are metabolized by the fungus to the corresponding 11-oxygenated derivatives of the normal fungal ent-kaurenoids and some C20-GAs; no 11-oxygenated C19-GAs are formed. Grandiflorenic acid, 11β-hydroxygrandiflorenic acid, attractyligen and ent-15β-hydroxykaurenoic acid are metabolized to unidentified products.  相似文献   

5.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

6.
Ethyl 6-O-benzyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (2) was converted, in three steps and in 73% overall yield, into ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-ribo-hex-2-enopyranoside. This transformation involved silylation of 2 with (bromomethyl)chlorodimethylsilane and application of the Nishiyama-Stork radical cyclisation, followed by Tamao oxidation of the sila cycle. Ethyl 6-O-benzyl-2,3-dideoxy-α-d-threo-hex-2-enopyranoside and benzyl 2,6-di-O-benzyl-α-l-threo-hex-4-enopyranoside were similarly transformed into, respectively, ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-lyxo-hex-2-enopyranoside (50%), and benzyl 2,6-di-O-benzyl-4-deoxy-4-C-(hydroxymethyl)-β-d-galactopyranoside (71%).  相似文献   

7.
《Carbohydrate research》1999,315(1-2):106-116
The C-glucosyl aldehyde, 2-C-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)ethanal was prepared from the C-glucopyranosyl propene precursor by ozonolysis. Reductive amination of the C-glucosyl aldehyde and subsequent deprotection gave 1-anilino-2-C-(α-d-glucopyranosyl)ethane. The E and Z isomers of the oxime derivative, 1-C-(α-d-arabinofuranosyl)methanal oxime were prepared by treating their aldehyde precursor with hydroxylamine. Acetylation of the oxime, followed by catalytic hydrogenation and deprotection, gave the corresponding 1-C-(α-d-arabinofuranosyl)methylamine. Reductive amination of ethyl 2,3-O-isopropylidene-α-d-lyxo-pentodialdo-1,4-furanoside using aniline gave ethyl 5-anilino-5-deoxy-d-lyxo-furanoside. Inhibition studies with these compounds on β-d-glucosidase from sweet almond, using o-nitrophenyl d-glucopyranoside as substrate, were carried out.  相似文献   

8.
Configurational assignments for the tertiary alcoholic centers of four branched-chain 3-C-nitromethylglycopyranosides, namely, methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-allopyranoside (1), benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-glucopyranoside (4), benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-C-nitromethyl-α-D-allopyranoside (5), and methyl 4,6-O-benzylidene-3-C-nitromethyl-2-O-p-tolylsulfonyl-α-D-glucopyranoside (8), were made on the basis of the downfield chemical shifts of their identifiable protons per molar equivalent of added Eu(fod)3, as compared with those of model compounds, of known configuration, having a close structural relationship. In some cases, the assignments were corroborated by the position of the acetyl resonances in the unshifted 60-MHz p.m.r. spectra of the corresponding O-acetyl derivatives.  相似文献   

9.
Treatment of methyl 4,6-O-benzylidene-α-D-mannopyranoside with dichloromethylenedimethylammonium chloride gave methyl 4,6-O-benzylidene-3-chloro-3-deoxy-2-(N,N-dimethylcarbamoyl)-α-D-altropyranoside and methyl 4,6-O-benzy]idene-2-chloro-2-deoxy-3-(N,N-dimethylcarbamoyl)-α-D-glucopyranoside. Methyl 4,6-O-benzylidene-α-D-allopyranoside gave under analogous conditions the corresponding 2-chloro-3-(N,N-dimethylcarbamoyl)-α-D-altrose and 3-chloro-2-(N,N-dimethylcarbamoyl)-α-D-glucose derivatives. Methyl 5-O-benzyl-α,β-D-ribofuranoside and methyl 5-O-methyl-β-D-ribofuranoside gave only the corresponding methyl 3-chloro-2-(N,N-dimethylcarbamoyl)-α-D-xylofuranoside derivatives.  相似文献   

10.
The use of carbohydrates for establishing, by synthesis, the absolute configuration of branched aliphatic alcohols is demonstrated by the synthesis and degradation of carbohydrate derivatives that contain two branch points. Benzyl 4,6-O-benzylidene-2,3-dideoxy-3-C-ethyl-2-C-hydroxymethyl-α-d-glucopyranoside (23) and -mannopyranoside (24) were formed from benzyl 2,3-anhydro-4,6-O-benzylidene-α-d-mannopyranoside (17) by a reaction sequence that involved ring-opening with ethylmagnesium chloride, oxidation, epimerisation, methylenation, and hydroboronation. The gluco isomer 23 was converted into (+)-(R)-2,3-bisacetoxymethylpentyl acetate (1) by sequential hydrogenolysis, borohydride reduction, periodate oxidation, borohydride reduction, and acetylation. The synthesis of 1 provides confirmatory evidence for the absolute configuration of the alkaloid pilocarpine (2). Unidentified products, and not the expected free-sugars, were obtained by acidic hydrolysis of methyl 4,6-O-benzylidene-2,3-dideoxy-3-C-ethyl-2-C-hydroxymethyl-α-d-glucopyranoside (8) and -mannopyranoside (9). Convenient syntheses of benzyl α-d-glucopyranoside derivatives are described.  相似文献   

11.
Various di- and tri-saccharides containing l-rhamnose were synthesized by condensation of 2,3,4-tri-O-acetyl- or 2,3,4-tri-O-benzoyl-α-l-rhamnopyranosyl bromide with an unblocked glycopyranoside. The determination of the anomeric configuration of l-rhamnose saccharides by n.m.r. is difficult because structure has a greater effect on the spectra than does configuration. The α and β configurations and the position of the substitution may be assigned from the chemical shifts of H-5 and CH3. In all the compounds having a β configuration, a shielding of the methyl group and a deshielding of the H-5 proton have been observed as compared to the compounds having an α configuration. The H-5 proton and the methyl group of peracetylated, (1→3)-linked α-l derivatives always resonate at higher fields than the corresponding protons of (1→6)-linked α-l derivatives.  相似文献   

12.
The reaction of protected 1,2-anhydro-α-d-gluco- and β-d-manno-pyranoses with alkyl and phenyl organocuprates afforded the corresponding C-glycosyl compounds in acceptable to high yield. Complete stereocontrol was obtained, leading respectively to the β-d or the α-d anomer. With the perbenzylated manno derivative, deoxygenation at C-2 was achieved in high yield, affording 2-deoxy-α-d-C-glycosyl compounds.  相似文献   

13.
17a-Methoxycarbonyl- and 17a-carboxamido-d-homoestra-1,3,5(10),17-tetraene derivatives were synthesized by palladium-catalyzed carbonylation reactions of the corresponding 17a-iodo-d-homoestra-1,3,5(10),17-tetraene derivatives using methanol and various amines as O- and N-nucleophiles, respectively. Both the natural (13β) and the epi (13α) series of compounds were isolated. The 17a-iodo-17-ene functionalities in the two 13-epimer series differ in reactivity. While the aminocarbonylations were practically complete in the 13β series in reasonable reaction time under mild conditions and high isolated yields were achieved, the corresponding 13α-17a-iodo-17-ene substrate has shown decreased reactivity resulting in moderate to low yields. However, under high carbon monoxide pressure (40 bar) excellent yields can be obtained even in the 13α series. The aminocarbonylation was completely chemoselective in both series, i.e., the corresponding 17a-carboxamido-17-ene derivatives were formed exclusively.  相似文献   

14.
The mechanism of C-C and ether bond cleavages of Cα-or Cβ-deuterated β-O-4 and β-l lignin substructure models and the vicinal diol compounds catalyzed by the enzyme system from Phanerochaete chrysosporium culture was investigated. The enzymatic oxidation of β-O-4 lignin model compounds in the presence of H2O2 and O2 yielded C6-Cα-derived benzaldehyde, and Cβ-Cγ-derived product together with the arylglycerol product. Likewise, the β-l models and the diol compounds also underwent the C-C bond cleavage, yielding C6-Cβ-derived benzaldehyde and the arylglycol product. The results demonstrated that the d-labels at Cα and Cβ of the substrates were retained in the products after the Cα-Cβ and ether bond cleavages.  相似文献   

15.
《Carbohydrate research》1986,154(1):145-163
3,4,6-Tri-O-acetyl-1,2-O-[1-(exo-, endo-cyano)ethylidene]-α-d-galacto- (1a/b), -α-d-gluco- (2a/b), and -β-d-manno-pyranose (3a/b) were stereoselectively isomerized to the corresponding per-O-acetylated 1,2-trans-aldohexopyranosyl cyanides in 75, 16, and 62% yield, respectively, by treatment with boron trifluoride etherate in dry nitromethane. The corresponding per-O-acetylated 1,2-cis-aldohexopyranosyl cyanides were obtained concurrently in respective yields of 1.9, 0.9, and 4.8%. The per-O-acetylaldohexopyranosyl cyanide products were found stable to the reaction conditions and were readily isolated following completion of the rearrangement. It had previously been proved that reaction of 2,3,4,6-tetra-O-acetyl-α-d-manno- and -gluco-pyranosyl bromide with mercuric cyanide in nitromethane generates, in the ratio of ∼1:1, the desired 1,2-trans-glycosyl cyanides and the corresponding 1,2-O-(1-cyanoethylidene) isomers (3a/b and 2a/b, respectively). Treatment of these reaction-mixtures with boron trifluoride etherate in nitromethane effected the rearrangement of 3a/b and 2a/b, thereby facilitating the isolation, and increasing the overall yields, of the per-O-acetylated 1,2-trans-d-manno and -gluco-pyranosyl cyanides (58 and 30% total yield, respectively) relative to the earlier procedures. The boron trifluoride etherate-mediated reaction of per-O-acetyl-α- and -β-d-galacto, -α- and -β-d-gluco-, -α-d-manno-, and -2-deoxy-2-phthalimido-β-d-gluco-pyranoses with trimethylsilyl cyanide in nitromethane was also investigated. This reaction provides a “one-flask” synthesis of the corresponding per-O-acetylated 1,2-trans-aldohexopyranosyl cyanides in which 1,2-O-(1-cyanoethylidene) derivatives are isomerized in situ. Finally, improved preparations of the (not readily accessible) per-O-acetylated 1,2-cis-d-manno- and -gluco-pyranosyl cyanides are described. Thus, 2,3,4,6-tetra-O-acetyl-α- and -β-d-mannopyranosyl cyanide (48 and 16% total yield, respectively) and -α- and -β-d-glucopyranosyl cyanide (12 and 39% total yield, respectively) were synthesized by fusion of the corresponding -α-d-glycosyl bromides with mercuric cyanide.  相似文献   

16.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

17.
Treatment of 1,2-O-isopropylidene-α-D-glycero-tetros-3-ulofuranose (7) with cyanomethylenetriphenylphosphorane gave in excellent yield a mixture of the geometrical isomers of the corresponding cyanomethylenic derivative. After treatment with potassium permanganate, and then with sodium borohydride, this unsaturated, branched-chain sugar derivative was stereospecifically converted into 3-C-hydroxymethy]-1,2-O-isopropylidene-β-L-threofuranose. Similarly, treatment of the L-enantiomer of 7 with methylthiomethylenetriphenylphosphorane gave the expected methylthiomethylenic analogs, from which 3-deoxy-3-C-methyl and 3-deoxy-3-C-dimethoxymethyl derivatives were prepared. Wittig reactions thus allow the synthesis of branched-chain sugars bearing the side-chain on the more hindered side of the ring, compounds which are difficult to obtain by other methods.  相似文献   

18.
The 5-O-(2,6-diamino-2,6-dideoxy-α-d-glucopyranosyl)-2-deoxystreptamine derivative and its related compounds were synthesized by a modified Königs-Knorr condensation of 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide (I) with 4,6-di-O-acetyl-N,N′-dicarbobenzoxy-2-deoxystreptamine (V) and the corresponding streptamine (XI). The aglycons (V) and (XI) were prepared by selective acetylation of the aminocyclitol derivatives by taking advantage of the reactivity difference between the hydroxyl groups at C5 and C4 or C6. The condensed products were converted to N-acetyl derivatives and were shown to have the α-configuration by PMR spectroscopy.  相似文献   

19.
Ethynylation of 1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose (1) gave the 3-C-ethynyl allo derivative 2, together with an adduct (3) resulting from interaction of two molecules of 1 with one of acetylene. Lithium aluminum hydride reduced the acetylenes 2 and 3 to the corresponding alkenes 4 and 8; on sequential ozonolysis-borohydride reduction, these both gave 3-C-(hydroxymethyl)-1,2:5,6-di- O-isopropylidene-α-D-allofuranose (6), further characterized as its 3,31-cyclic carbonate 9. Ozonolysis of the acetylene 2 gave the 31,5-lactone (5) of the 3-C-carboxy analog, thus establishing the stereochemistry of 2, which was independently established by n.m.r. spectroscopy employing a lanthanide shift-reagent. Treatment of 2 with mercuric acetate in ethyl acetate, followed by hydrogen sulfide, gave a mixture of the 3-C-acetyl-3-O-acetyl derivative 10 and a product (11) derived from internal cyclization of 5,6-deacetonated, O-deacetylated 10. Reduction of 10 with lithium aluminum hydride gave a separable mixture of diastereoisomeric 3-C-(l-hydroxy-ethyl) derivatives (12a, 12b) that were individually converted into their corresponding 3,31-cyclic carbonates 13a and 13b, products that contain the branch functionality of the unusual, branched-chain sugar aldgarose.  相似文献   

20.
Tracer experiments with 14C-labelled precursors in Iris × hollandica cv. Wedgwood, Roseda lutea L. and Reseda Odorata L. have demonstrated that 3-(3-carboxyphenyl)alanine and 3-(3-carboxy-4-hydroxyphenyl)alanine can be derived from the corresponding pyruvic acids, presumably by unspecific trans-aminations, and that (3-carboxyphenyl)glycine and (3-carboxy-4-hydroxy-phenyl)glycine can be derived from the corresponding phenylglyoxylic acids The glycine derivatives are derived from the alanine derivatives, and the corresponding mandelic acids are intermediates in these transformations. The corresponding phenylacetic acids are incorporated only slightly into the glycine derivatives, indicating that oxidation at the benzylic position in the C6–C3 compounds takes place early in the transformation. The corresponding cinnamics acids are not metabolized at all in the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号