首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human lymphoblastoid cells transformed by Epstein-Barr virus aggregated rapidly in the presence of tumor-promoting phorbol esters and dihydroteleocidin B. Cell aggregation was almost complete after incubation for 6 hours. In amounts of a few ng, they induced significant aggregation. Their abilities to aggregate cells could be measured quantitatively and correlated well with their effects in promoting skin tumors.  相似文献   

2.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

3.
Osteoarthritis, a degenerative disease of the load-bearing joints, greatly reduces quality of life for millions of Americans and places a tremendous cost on the American healthcare system. Due to limitations of current treatments, tissue engineering of articular cartilage may provide a promising therapeutic option to treat cartilage defects. However, cartilage tissue engineering has yet to recapitulate the functional properties of native tissue. During normal joint loading, cartilage tissue experiences variations in osmolarity and subsequent changes in ionic concentrations. Motivated by these known variations in the cellular microenvironment, this study sought to improve the mechanical properties of neocartilage constructs via the application of hyperosmolarity and transient receptor potential vanilloid 4 (TRPV4) channel activator 4α-phorbol 12,13-didecanoate (4αPDD). It was shown that 4αPDD elicited significant increases in compressive properties. Importantly, when combined, 4αPDD positively interacted with hyperosmolarity to modulate its effects on tensile stiffness and collagen content. Thus, this study supports 4αPDD-activated channel TRPV4 as a purported mechanosensor and osmosensor that can facilitate the cell and tissue level responses to improve the mechanical properties of engineered cartilage. To our knowledge, this study is the first to systematically evaluate the roles of hyperosmolarity and 4αPDD on the functional (i.e., mechanical and biochemical) properties of self-assembled neotissue. Future work may combine 4αPDD-induced channel activation with other chemical and mechanical stimuli to create robust neocartilages suitable for treatment of articular cartilage defects.  相似文献   

4.
Glyoxalase I and II catalyze the formation and breakdown of S-lactoylglutathione respectively. Recent studies have implicated this com-pound as a possible mediator of immune and inflammatory responses. Incubation of human polymorphonuclear leukocytes with the tumor promoter, 12-0-tetradecanoylphorbol-13-acetate has been found to affect the activities of both glyoxalase enzymes in an interrelated manner. The diester either increases the activity of glyoxalase I or decreases the activity of glyoxalase II or has both effects. It is suggested that a subsequent increase in S-lactoylglutathione might mediate some or all of the effects of the phorbol diesters.  相似文献   

5.
Two types of bovine pituitary gland polyprenols were resolved by silica gel chromatography; i. e., the high molecular weight dolichols of 17 to 23 isoprene units with the OH-terminal isoprene residue saturated, and a fully unsaturated decaprenol. The latter compound was found to be a mixture of molecules differing in the proportion of cis- and trans- isoprene units.  相似文献   

6.
The possible molecular interaction between phorbol esters and a phospholipid was examined in monolayer films at an air-water interface. The surface pressure isotherms indicated that, at close-to-physiological pressure, there existed a repulsive interaction between the phospholipid and biologically active phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and phorbol 12,13-didecanoate (PDD). There was a close parallelism between the relative biological potency of different phorbol esters, as tumour promoters, and the magnitude of their repulsive interaction with the phospholipid. These findings raise the possibility that a biophysical interference of phorbol esters with the phospholipid domain of biological membranes may represent an important determinant of their biological actions.  相似文献   

7.
The effects of various promoters in two-step carcinogenesis on the induction of histidine decarboxylase in the skin of mice was investigated. The potencies of various phorbol esters in inducing histidine decarboxylase activity were parallel with their tumor-promoting activities. Indole alkaloids such as dihydroteleocidin B and lyngbyatoxin A, which induced ornithine decarboxylase and promoted tumor development in the skin of mice with the same potency as 12-O-tetradecanoylphorbol-13-acetate (TPA), also induced histidine decarboxylase activity. These results suggest that histamine produced by this inducible histidine decarboxylase may play some role in tumor promotion.  相似文献   

8.
In rat hippocampal slices, carbachol and norepinephrine induce an accumulation of [3H]-inositol-1-phosphate which is markedly amplified in the presence of lithium. The tumor-promoting agents phorbol 12,13-dibutyrate (PDB) and 4 beta phorbol, 12 beta-myristate, 13 alpha-acetate (PMA) have no effect on [3H] inositol-1-phosphate accumulation alone, but when preincubated with hippocampal slices significantly inhibit the accumulation of [3H]-inositol-1-phosphate induced by carbachol and norepinephrine. The IC50 values for PDB and PMA are 0.2 microM and 25 microM respectively. In contrast, the weak tumor promoting agents 4-O-methylphorbol 12 myristate 13 acetate (MPMA) and phorbol 13,20-diacetate (P 13,20 DA) only slightly attenuate the agonist-induced response at concentrations less than or equal to 100 microM, whereas 4 alpha-phorbol (4 alpha-PHR), a biologically inactive phorbol, has no effect. These data suggest that phorbol ester receptor-mediated events may be negatively coupled to agonist-induced phosphatidylinositol hydrolysis.  相似文献   

9.
Mammalian cells were after irradiation suspended in melted agarose, and casted on microscope slides. The slides were after gelling at 0°C immersed in a neutral detergent solution which lysed the cells. A weak electric field (5 V/cm) was then applied over the gel for 5 minutes. The DNA in the gel was stained with the fluorescent dye acridine orange and gives a green emission in a microscope photometer. DNA had migrated towards the anode and this migration was more pronounced in irradiated than in control cells. The differences in migration pattern were quantitatively measured. The lower detection limit was below 0.5 Gy and a plateau in the dose-effect curve was reached at about 3 Gy. In repair experiments residual DNA damage could be observed after postirradiation incubation for 60 minutes.The advantages of the method is: no radioactive labelling and only a few number of cells is required.  相似文献   

10.
11.
Previously, we demonstrated that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is one of the serum glucocorticoid-induced protein kinase1 (SGK1) authentic substrate proteins, and that the Ser 824 residue of TRPV4 is phosphorylated by SGK1 [1]. In this study, we demonstrated that phosphorylation on the Ser 824 residue of TRPV4 is required for its interaction with F-actin, using TRPV4 mutants (S824D; a phospho-mimicking TRPV4 mutant and S824A; a non-phosphorylatable TRPV4 mutant) and its proper subcellular localization. Additionally, we noted that the phosphorylation of the Ser824 residue promotes its single channel activity, Ca2 + influx, protein stability, and cell surface area (expansion of plasma membrane).  相似文献   

12.
TRPV4, a close relative of the vanilloid receptor TRPV1, is activated by diverse modalities such as endogenous lipid ligands, hypotonicity, protein kinases and, possibly, mechanical inputs. While its multiple roles in vivo are being explored with KO mice and selective agonists, there is a dearth of selective antagonists available to examine TRPV4 function. Herein we detail the use of a focused library of commercial compounds in order to identify RN-1747 and RN-1734, a pair of structurally related small molecules endowed with TRPV4 agonist and antagonist properties, respectively. Their activities against human, rat and mouse TRPV4 were characterized using electrophysiology and intracellular calcium influx. Significantly, antagonist RN-1734 was observed to completely inhibit both ligand- and hypotonicity-activated TRPV4. In addition, RN-1734 was found to be selective for TRPV4 in a TRP selectivity panel including TRPV1, TRPV3 and TRPM8, and could thus be a valuable pharmacological probe for TRPV4 studies.  相似文献   

13.
Abstract: Involvement of protein kinase C (PKC) in the release of γ-aminobutyric acid (GABA) was examined in Xenopus laevis oocytes injected with mRNA from rat cerebellum, as compared with findings in slices of rat cerebellum. The mRNA-injected oocytes preloaded with [3H]GABA showed spontaneous release of [3H]GABA, ∼0.5% of GABA content per 1 min. Stimulation with either Ca2+ ionophore (A23187) or a high K+ concentration increased the release of [3H]GABA from slices of rat deep cerebellar nucleus and mRNA-injected oocytes but not from noninjected and water-injected oocytes. 12- O -Tetradecanoylphorbol 13-acetate (10–300 n M ) but not 4α-phorbol 12,13-didecanoate (300 n M ) potentiated the A23187-stimulated release of [3H]GABA from slices and from mRNA-injected oocytes, in a concentration-dependent manner. Thus, machinery associated with release processes of GABA can be expressed in oocytes by injecting rat cerebellar mRNA, and PKC participates in GABA release from the functionally expressed GABAergic nerve terminals.  相似文献   

14.
The combination of 1.6 microM 4 beta phorbol, 12 beta myristate, 13 alpha acetate (PMA) and 1 microM A23187 produced a five-fold greater stimulation of rat hepatocyte glycogen phosphorylase activity than was seen with PMA alone. Vasopressin activation of glycogen phosphorylase was comparable to that seen with PMA plus A23187. Glycogen phosphorylase activity due to PMA plus A23187 was increased significantly after 30 sec, maximal at 120 and sustained at elevated levels for 240 sec. In contrast, activation due to vasopressin was maximal at 30 sec followed by a decrease. The addition of PMA 5 min prior to the A23187 abolished the synergism between these two agents. These data are compatible with the hypothesis that diacylglycerol and Ca2+ synergistically increase glycogen phosphorylase activity in rat hepatocytes.  相似文献   

15.
Two cDNAs encoding taxoid-O-acetyl transferases (TAX 9 and TAX 14) were obtained from a previously isolated family of Taxus acyl/aroyl transferase cDNA clones. The recombinant enzymes catalyze the acetylation of taxadien-5α,13α-diacetoxy-9α,10β-diol to generate taxadien-5α,10β,13α-tri-acetoxy-9α-ol and taxadien-5α,9α,13α-triacetoxy-10β-ol, respectively, both of which then serve as substrates for a final acetylation step to yield taxusin, a prominent side-route metabolite of Taxus. Neither enzyme acetylate the 5α- or the 13α-hydroxyls of taxoid polyols, indicating that prior acylations is required for efficient peracetylation to taxusin. Both enzymes were kinetically characterized, and the regioselectivity of acetylation was shown to vary with pH. Sequence comparison with other taxoid acyl transferases confirmed that primary structure of this enzyme type reveals little about function in taxoid metabolism. Unlike previously identified acetyl transferases involved in Taxol production, these two enzymes appear to act exclusively on partially acetylated taxoid polyols to divert the Taxol pathway to side-route metabolites.  相似文献   

16.
Abstract

Biotransformation of 5α-hydroxycaryophylla-4(12),8(13)-diene (1) was studied with Cunninghamella elegans and Rhizopus stolonifer. Incubation of 1 with C. elegans gave regioselective oxidative addition (hydration) and isomerization at the C-4(12) exocyclic double bond and hydroxylation at C-3 and C-15, and thus provided two polar metabolites, (3Z),8(14)-caryophylladiene-5α,(11R)-15-diol (2) and 3β,4β,5α-trihydroxycaryophylla-8(13)-ene (3). Incubation of 1 with R. stolonifer gave a transannular cyclization reaction and afforded 2β-methoxyclovan-9-one (4), clovan-2β-ol-9-one (5) and 8-methoxycaryolane-5α,13β-diol (6). Compounds 3 and 6 are new compounds described here for the first time; their structures were deduced with the help of different spectroscopic techniques.  相似文献   

17.
Human liver microsomes catalyze an efficient 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. The hydroxylation is involved in a minor, alternative pathway for side-chain degradation in the biosynthesis of cholic acid. The enzyme responsible for the microsomal 25-hydroxylation has been unidentified. In the present study, recombinant expressed human P-450 enzymes have been used to screen for 25-hydroxylase activity towards 5β-cholestane-3α,7α,12α-triol. High activity was found with CYP3A4, but also with CYP3A5 and to a minor extent with CYP2C19 and CYP2B6. Small amounts of 23- and 24-hydroxylated products were also formed by CYP3A4. The Vmax for 25-hydroxylation by CYP3A4 and CYP3A5 was 16 and 4.5 nmol/(nmol×min), respectively. The Km was 6 μM for CYP3A4 and 32 μM for CYP3A5. Cytochrome b5 increased the hydroxylase activities. Human liver microsomes from ten different donors, in which different P-450 marker activities had been determined, were incubated with 5β-cholestane-3α,7α,12α-triol. A strong correlation was observed between formation of 25-hydroxylated 5β-cholestane-3α,7α,12α-triol and CYP3A levels (r2=0.96). No correlation was observed with the levels of CYP2C19. Troleandomycin, a specific inhibitor of CYP3A4 and 3A5, inhibited the 25-hydroxylase activity of pooled human liver microsomes by more than 90% at 50 μM. Tranylcypromine, an inhibitor of CYP2C19, had very little effect on the conversion. From these results, it can be concluded that CYP3A4 is the predominant enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes.  相似文献   

18.
DNA breakage by hydrolyzable tannins of known structures was investigated by agarose or polyacrylamide gel electrophoretic analysis. Hydrolyzable tannins could cause both double-strand and single-strand breakages in λDNA in the presence of Cu2+. The breaking reaction was strongly suppressed at concentrations higher than 100 μm of hydrolyzable tannins. DNA breakage by various tannins was dependent upon their sorts, numbers, and binding sites of the constituent acids and polyalcohols. Metallic ions other than Cu2+ had little effect on the breaking reaction.  相似文献   

19.
Oncostatin M (OSM), a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family, has been implicated in regulation of various chronic inflammatory processes. Previous work has shown that OSM induces eosinophil accumulation in mouse lungs in vivo and stimulates the eosinophil-selective chemokine eotaxin-1 synergistically with IL-4 in vitro. To examine the role of receptor regulation by OSM in synergistic eotaxin-1 responses, we here examine the modulation of the type-II IL-4 receptor (IL-4Rα and IL-13Rα1) by OSM and other gp130/IL-6 cytokine family members using NIH3T3 fibroblasts and primary mouse lung fibroblasts. We first show that OSM with either IL-13 or IL-4 synergistically induces eotaxin-1 expression in a dose-dependent fashion. Analysis of IL-4Rα expression at the protein (Western blot and FACS) and RNA (TAQMAN) levels showed that OSM markedly elevates expression by 3 h. OSM enhanced IL-13Rα1 mRNA and induced a smaller but detectable increase in total IL-13Rα1 protein. Priming fibroblasts with OSM for 6 h markedly enhanced subsequent IL-13 and IL-4-induced eotaxin-1 responses and STAT6 tyrosine-641 phosphorylation. Regulation of IL-4Rα by OSM was sensitive to inhibition of the PI3′K pathway by LY294002. These studies provide novel mechanistic insights in OSM role in regulation of synergistic eotaxin-1 responses and IL-4Rα expression in fibroblasts.  相似文献   

20.
The long-chain metabolites of vitamin E (LCM) emerge as a new class of regulatory metabolites and have been considered as the active compounds formed during vitamin E metabolism. The bioactivity of the LCM is comparable to the already established role of other fat-soluble vitamins. The biological modes of action of the LCM are far from being unraveled, but first insights pointed to distinct effects and suggested a specific receptor, which in turn lead to the aforementioned hypothesis. Here, a new facet on the interaction of LCM with foam cell formation of THP-1 macrophages is presented. We found reduced levels of mRNA and protein expression of lipid droplet associated protein PLIN2 by α-tocopherol (α-TOH), whereas the LCM and the saturated fatty acid, stearic acid, increased expression levels of PLIN2. In a lipotoxic setup (0–800?μM stearic acid and 0–100?μM α-TOH or 0–5?μM α-13′-COOH) differences in cellular viability were found. A reduced viability was observed for cells under co-treatment of α-TOH and stearic acid, whereas an increased viability for stearic acid incubation in combination with α-13′-COOH was observed. The striking similarity of PLIN2 expression levels and worsened or mitigated lipotoxicity, respectively, revealed a protective effect of PLIN2 on basal stearic acid-induced lipotoxic conditions in PLIN2 knockdown experiments. Based on our results, we conclude that α-13′-COOH protects cells from lipotoxicity, at least partially via PLIN2 regulation.Herewith another facet of LCM functionality was presented and their reputation as regulatory metabolites was further established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号