首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the direct effect of elevated atmospheric CO2 concentrations on leaf respiration in darkness (R) over a broad range of measurement temperatures. Our aim was to further elucidate the underlying mechanism(s) of the often-reported inhibition of leaf R by a doubling of the atmospheric CO2 concentration. Experiments were conducted using two species of Plantago that differed in maximum relative growth rate (fast-growing Plantago lanceolata L. and the slow-growing P. euryphylla Briggs, Carolin & Pulley). Rates of leaf respiration (R) were measured at atmospheric CO2 concentrations ranging from 75 to 2000 &mgr;mol mol-1 at temperatures from 12 to 42 degrees C. R was measured as CO2 release with a portable gas exchange system with infrared gas analysers. Our hypothesis was that the changes in temperature alter the flux coefficient (i.e. the extent to which changes in potential enzyme activity has an effect on the rate of a reaction) of enzymes potentially affected by CO2. Initial analysis of our results suggested that R was inhibited by elevated CO2 in both species, with the apparent degree of inhibition being greatest at low temperature. Moreover, the apparent degree of inhibition following a doubling of atmospheric CO2 concentration from 350 to 700 &mgr;mol mol-1 was similar to that reported by several previous studies (approximately 14% and 26% for P. lanceolata and P. euryphylla, respectively) at a temperature equal to the mean of the previous studies. However, subsequent correction for diffusion leaks of CO2 across the gas exchange's cuvette gaskets revealed that no significant inhibition had occurred in either species, at any temperature. The inhibitory effect of elevated CO2 on leaf respiratory CO2 release reported by previous studies may therefore have been overestimated.  相似文献   

2.
Air temperatures have risen over the past 50 yr along the Antarctic Peninsula, and it is unclear what impact this is having on Antarctic plants. We examined the growth response of the Antarctic vascular plants Colobanthus quitensis (Caryophyllaceae) and Deschampsia antarctica (Poaceae) to temperature and also assessed their ability for thermal acclimation, in terms of whole-canopy net photosynthesis (P(n)) and dark respiration (R(d)), by growing plants for 90 d under three contrasting temperature regimes: 7°C day/7°C night, 12°C day/7°C night, and 20°C day/7°C night (18 h/6 h). These daytime temperatures represent suboptimal (7°C), near-optimal (12°C), and supraoptimal (20°C) temperatures for P(n) based on field measurements at the collection site near Palmer Station along the west coast of the Antarctic Peninsula. Plants of both species grown at a daytime temperature of 20°C had greater RGR (relative growth rate) and produced 2.2-3.3 times as much total biomass as plants grown at daytime temperatures of 12° or 7°C. Plants grown at 20°C also produced 2.0-4.1 times as many leaves, 3.4-5.5 times as much total leaf area, and had 1.5-1.6 times the LAR (leaf area ratio; leaf area:total biomass) and 1.1-1.4 times the LMR (leaf mass ratio; leaf mass:total biomass) of plants grown at 12° or 7°C. Greater RGR and biomass production at 20°C appeared primarily due to greater biomass allocation to leaf production in these plants. Rates of P(n) (leaf-area basis), when measured at their respective daytime growth temperatures, were highest in plants grown at 12°C, and rates of plants grown at 20°C were only 58 (C. quitensis) or 64% (D. antarctica) of the rates in plants grown at 12°C. Thus, lower P(n) per leaf area in plants grown at 20°C was more than offset by much greater leaf-area production. Rates of whole-canopy P(n) (per plant), when measured at their respective daytime growth temperatures, were highest in plants grown at 20°C, and appeared well correlated with differences in RGR and total biomass among treatments. Colobanthus quitensis exhibited only a slight ability for relative acclimation of P(n) (leaf-area basis) as the optimal temperature for P(n) increased from 8.4° to 10.3° to 11.5°C as daytime growth temperatures increased from 7° to 12° to 20°C. There was no evidence for relative acclimation of P(n) in D. antarctica, as plants grown at all three temperature regimes had a similar optimal temperature (10°C) for P(n). There was no evidence for absolute acclimation of P(n) in either species, as rates of P(n) in plants grown at a daytime temperature of 12°C were higher than those of plants grown at daytime temperatures of 7° or 20°C, when measured at their respective growth temperatures. The poor ability for photosynthetic acclimation in these species may be associated with the relatively stable maritime temperature regime during the growing season along the Peninsula. In contrast to P(n), both species exhibited full acclimation of R(d), and rates of R(d) on a leaf-area basis were similar among treatments when measured at their respective daytime growth temperature. Our results suggest that in the absence of interspecific competition, continued warming along the Peninsula will lead to improved vegetative growth of these species due to (1) greater biomass allocation to leaf-area production (as opposed to improved rates of P(n) per leaf area) and (2) their ability to acclimate R(d), such that respiratory losses per leaf area do not increase under higher temperature regimes.  相似文献   

3.
Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures.  相似文献   

4.
There was a large increase in nitrate reductase activity (NAR) assayed both in vivo and in vitro in roots of barley plants (cv. Midas_ grown with roots at 10°C and shoots at 20°C, compared with whole plants grown at 20°C. There were diurnal fluctuations in NRA in roots from both treatments, but they were much greater in roots grown at 20°C, where NRA fell to a very low value in the dark period. The diurnal fluctuations in the malate content of the roots were also related to the root growth temperature. Plants with roots grown at the lower temperature had a higher malate content, especially in the dark period where it was 20 times greater than in plants with roots at 20°C. At all times there was a three-fold increase in soluble carbohydrate in cooled roots and diurnal fluctuations were much less pronounced than those of malate. Growth at low temperatures increased the total flux of amino N into the xylem sap and increased the proportion of reduced N in the total N flux. At certain times of day both 10°C- and 20°C-grown roots responded to exogeneous malate by increasing the flux of amino acid into the xylem sap, although this effect was always more pronounced in 20°C-grown roots.  相似文献   

5.
Structural and functional alterations to the photosynthetic apparatus after growth at low temperature (5[deg]C) were investigated in the green alga Chlorella vulgaris Beijer. Cells grown at 5[deg]C had a 2-fold higher ratio of chlorophyll a/b, 5-fold lower chlorophyll content, and an increased xanthophyll content compared to cells grown at 27[deg]C even though growth irradiance was kept constant at 150 [mu]mol m-2 s-1. Concomitant with the increase in the chlorophyll a/b ratio was a lower abundance of light-harvesting polypeptides in 5[deg]C-grown cells as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by western blotting.The differences in pigment composition were found to be alleviated within 12 h of transferring 5[deg]C-grown cells to 27[deg]C. Furthermore, exposure of 5[deg]C-grown cells to a 30-fold lower growth irradiance (5 [mu]mol m-2 s-1) resulted in pigment content and composition similar to that in cells grown at 27[deg]C and 150 [mu]mol m-2 s-1. Although both cell types exhibited similar measuring-temperature effects on CO2-saturated O2 evolution, 5[deg]C-grown cells exhibited light-saturated rates of O2 evolution that were 2.8-and 3.9-fold higher than 27[deg]C-grown cells measured at 27[deg]C and 5[deg]C, respectively. Steady-state chlorophyll a fluorescence indicated that the yield of photosystem II electron transport of 5[deg]C-grown cells was less temperature sensitive than that of 27[deg]C-grown cells. This appears to be due to an increased capacity to keep the primary, stable quinone electron acceptor of photosystem II (QA) oxidized at low temperature in 5[deg]C- compared with 27[deg]C-grown cells regardless of irradiance. We conclude that Chlorella acclimated to low temperature adjusts its photosynthetic apparatus in response to the excitation pressure on photosystem II and not to the absolute external irradiance. We suggest that the redox state of QA may act as a signal for this photosynthetic acclimation to low temperature in Chlorella.  相似文献   

6.
在野外自然条件下采用开顶式生长室模拟增温的方法, 研究了增温对川西北高寒草地3种主要植物(单子叶草本植物垂穗披碱草(Elymus nutans)和双子叶草本植物尼泊尔酸模(Rumex acetosa)和鹅绒委陵菜(Potentilla anserina))的生长及物质分配的影响。研究结果表明, 增温对3种植物的生长产生了显著影响, 垂穗披碱草和尼泊尔酸模的比叶面积和生物量积累在增温后显著增加, 而鹅绒委陵菜在增温后显著减少。在各组分中, 增温处理使尼泊尔酸模的叶生物量显著增加, 根生物量却显著下降, 而鹅绒委陵菜叶和茎的生物量在增温后显著减少, 根生物量却显著增加。增温对尼泊尔酸模各组分的养分含量产生了显著影响, 其中, 根部碳含量在增温后显著增加, 而氮含量在增温后显著减少。增温对尼泊尔酸模和鹅绒委陵菜的生物量在各组分中的分配产生了显著影响, 增温显著增加了尼泊尔酸模的叶重比(LMR)、根重比(RMR)和地下生物量/地上生物量(R/S), 而茎重比(SMR)在增温后却显著降低; 增温显著增加了鹅绒委陵菜的RMRR/S, 而SMRLMR在增温后却显著降低。增温对尼泊尔酸模和鹅绒委陵菜各组分中的碳、氮分配产生了显著影响, 增温显著增加了碳、氮在尼泊尔酸模叶片的分配比例, 并且使尼泊尔酸模根部的碳分配比例也显著增加, 而茎部的碳、氮分配比例却显著减少; 增温显著减少了碳在鹅绒委陵菜叶片的分配比例, 而根部的碳、氮分配比例却显著增加。  相似文献   

7.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

8.
The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.  相似文献   

9.
Adherence of yeasts to other microorganisms and epithelial cell surfaces is important in their colonization. Comparative studies based on the coaggregation of Candida dubliniensis versus Candida albicans with Fusobacterium nucleatum and other oral bacteria suggested differences in the surfaces of these yeasts. Transmission electron microscopy was used to test the hypothesis that there are morphologic variations in the cell surface of these two species. C. dubliniensis type strain CD36 and C. albicans ATCC 18804 were grown on Sabouraud's dextrose agar at various growth temperatures. In some experiments suspensions of yeast cells were treated with dithiothreitol. Fixation for transmission electron microscopy was accomplished using dimethylsulfoxide and alcian blue added to 3% paraformaldehyde and 1% glutaraldahyde in cacodylate buffer. The cell wall of both species was predominantly electron lucent and was visibly differentiated into several layers. A thin electron dense outer layer was seen with clearly visible fibrillar structures, closely associated to the cytoplasmic membrane. The length of the fibrils of the C. albicans cells grown at 37 degrees C was approximately two times greater than those of the cells grown at 25 degrees C. The fibrils of the 37 degrees C-grown cells were thin, distinct and tightly packed whereas those of the 25 degrees C-grown cells appeared blunt, loosely spaced and aggregated. C. dubliniensis demonstrated short, blunt fibrils appearing similar to those of the 25 degrees C-grown C. albicans cells. C. dubliniensis showed no difference in the density, length and arrangement of fibrils between the 25 degrees C and 37 degrees C growth temperatures. The shortest and most aggregated fibrils seen were of the 45 degrees C-grown C. albicans cells. Dithiothreitoltreated 37 degrees C-grown C. albicans cells revealed a distorted and partially destroyed fibrillar layer. In this investigation C. dubliniensis, unlike C. albicans, displayed an outer fibrillar layer that did not vary with variations in growth temperature. In addition, the fibrils on the C. dubliniensis cells were similar to those of the 25 degrees C-grown C. albicans in that they were considerably shorter and less dense than those of the 37 degrees C-grown C. albicans cells. It can be postulated, that C. dubliniensis exhibits constant cell surface characteristics consistent with hydrophobicity and that this property may give this species an ecological advantage. Therefore, C. dubliniensis may compete well in oral environments via enhanced attachment to oral microbes and other surfaces, perhaps even more efficiently than C. albicans.  相似文献   

10.
The response of understory species to elevated temperatures is not well understood but is important because these plants are highly sensitive to their growth conditions. Three-year-old plants of Panax quinquefolius, an understory herb endemic to the eastern deciduous forests of North America, were grown in a greenhouse at 25/20°C (day/night) or 30/25°C for one growing season and analyzed each month. Plants grown at high temperatures had an early onset of leaf senescence and therefore accumulated less carbon. From May to July, P. quinquefolius grown at high temperatures had decreased photosynthesis (52%), stomatal conductance (60%), and root and total biomass (33% and 28%, respectively) compared to plants grown at low temperatures. As P. quinquefolius prepared to overwinter, plants grown at high temperatures had less root biomass (53%) than plants in low temperatures. The amount of storage-root ginsenosides was unaffected by temperature, and differences in storage root size may explain why plants grown at high temperatures had greater concentrations of storage root ginsenosides (49%) than plants grown at low temperatures. Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature.  相似文献   

11.
The growth response of the hyphae of mycorrhizal fungi has been determined, both when plant and fungus together and when only the fungus was exposed to a temperature change. Two host plant species, Plantago lanceolata and Holcus lanatus, were grown separately in pots inoculated with the mycorrhizal fungus Glomus mosseae at 20/18 degrees C (day/night); half of the pots were then transferred to 12/10 degrees C. Plant and fungal growth were determined at six sequential destructive harvests. A second experiment investigated the direct effect of temperature on the length of the extra-radical mycelium (ERM) of three mycorrhizal fungal species. Growth boxes were divided in two equal compartments by a 20 micro m mesh, allowing only the ERM and not roots to grow into a fungal compartment, which was either heated (+8 degrees C) or kept at ambient temperature. ERM length (LERM) was determined on five sampling dates. Growth of H. lanatus was little affected by temperature, whereas growth of P. lanceolata increased with temperature, and both specific leaf area (SLA) and specific root length (SRL) increased independently of plant size. Percentage of colonized root (LRC) and LERM were positively correlated with temperature when in symbiosis with P. lanceolata, but differences in LRC were a function of plant biomass. Colonization was very low in H. lanatus roots and there was no significant temperature effect. In the fungal compartment LERM increased over time and was greatest for Glomus mosseae. Heating the fungal compartment significantly increased LERM in two of the three species but did not affect LRC. However, it significantly increased SRL of roots in the plant compartment, suggesting that the fungus plays a regulatory role in the growth dynamics of the symbiosis. These temperature responses have implications for modelling carbon dynamics under global climate change.  相似文献   

12.
To help understand carbon balance between shoots and developing roots, 41 bare-root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass-panelled sealable room at day/night air temperatures of 25/15 degrees C. Net CO(2) uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO(2) uptake rate measured for south-east-facing younger parts of the shoots averaged 1.94 micro mol m(-2) s(-1) at night, considerably higher than the community-level nocturnal net CO(2) uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO(2) uptake is twice as high for south-east-facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0.10 micro mol m(-2) s(-1) over the 13-week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13-week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above-ground biomass gains.  相似文献   

13.
Growth and N Allocation in Rice Plants under CO2 Enrichment   总被引:8,自引:1,他引:7       下载免费PDF全文
Makino A  Harada M  Sato T  Nakano H  Mae T 《Plant physiology》1997,115(1):199-203
The effects of CO2 enrichment on growth and N allocation of rice (Oryza sativa L.) were examined. The plants were grown hydroponically in growth chambers with a 14-h photoperiod (1000 [mu]mol quanta m-2 s-1) and a day/night temperature of 25/20[deg]C. From the 28th to 70th d after germination, the plants were exposed to two CO2 partial pressures, namely 36 and 100 Pa. The CO2 enrichment increased the final biomass, but this was caused by a stimulation of the growth rate during the first week of the exposure to elevated CO2 partial pressures. The disappearance of the initial stimulation of the growth rate was associated with a decreased leaf area ratio. Furthermore, CO2 enrichment decreased the investment of N in the leaf blades, whereas the N allocation into the leaf sheaths and roots increased. Thus, the decrease in leaf N content by CO2 enrichment was not due to dilution of N caused by a relative increase in the plant biomass but was due to the change in N allocation at the whole-plant level. We conclude that the growth responses of rice to CO2 enrichment are mainly controlled by leaf area expansion and N allocation into leaf blades at the whole-plant level.  相似文献   

14.
Some plants have the ability to maintain similar respiratory rates (measured at the growth temperature) when grown at different temperatures. This phenomenon is referred to as respiratory homeostasis. Using wheat and rice cultivars with different degrees of respiratory homeostasis (H), we previously demonstrated that high-H cultivars maintained shoot and root growth at low temperature [Kurimoto et al. (2004) Plant Cell Environ., 27: 853]. Here, we assess the relationship between respiratory homeostasis and the efficiency of respiratory ATP production, by measuring the levels of alternative oxidase (AOX) and uncoupling protein (UCP), which have the potential to decrease respiratory ATP production per unit of oxygen consumed. We also measured SHAM- and CN-resistant respiration of intact roots, and the capacity of the cytochrome pathway (CP) and AOX in isolated mitochondria. Irrespective of H, SHAM-resistant respiration of intact roots and CP capacity of isolated root mitochondria were larger when plants were grown at low temperature, and the maximal activity and relative amounts of cytochrome c oxidase showed a similar trend. In contrast, CN-resistant respiration of intact roots and relative amounts of AOX protein in mitochondria isolated from those roots, were lower in high-H plants grown at low temperature. In the roots of low-H cultivars, relative amounts of AOX protein were higher at low growth temperature. Relative amounts of UCP protein showed similar trends to AOX. We conclude that maintenance of growth rate in high-H plants grown at low temperature is associated with both respiratory homeostasis and a high efficiency of respiratory ATP production.  相似文献   

15.
There are large inter- and intraspecific differences in the temperature dependence of photosynthesis, but the physiological cause of the variation is poorly understood. Here, the temperature dependence of photosynthesis was examined in three ecotypes of Plantago asiatica transplanted from different latitudes, where the mean annual temperature varies between 7.5 and 16.8 degrees C. Plants were raised at 15 or 30 degrees C, and the CO(2) response of photosynthetic rates was determined at various temperatures. When plants were grown at 30 degrees C, no difference was found in the temperature dependence of photosynthesis among ecotypes. When plants were grown at 15 degrees C, ecotypes from a higher latitude maintained a relatively higher photosynthetic rate at low measurement temperatures. This difference was caused by a difference in the balance between the capacities of two processes, ribulose-1,5-bisphosphate regeneration (J(max)) and carboxylation (V(cmax)), which altered the limiting step of photosynthesis at low temperatures. The organization of photosynthetic proteins also varied among ecotypes. The ecotype from the highest latitude increased the J(max) : V(cmax) ratio with decreasing growth temperature, while that from the lowest latitude did not. It is concluded that nitrogen partitioning in the photosynthetic apparatus and its response to growth temperature were different among ecotypes, which caused an intraspecific variation in temperature dependence of photosynthesis.  相似文献   

16.
Water deficit and high temperature often occur simultaneously, but their effects on plants are usually investigated separately. The aim of this study was to test how interactions between water stress and nocturnal warming affect carbon allocation in the perennial grass, Leymus chinensis . Plant biomass, dry mass allocation, 14C partitioning and carbon isotope composition (δ13C) were measured. Severe and extreme water stress during nocturnal warming decreased the allocation of dry mass and 14C partitioning below ground to the roots, but moderate water stress significantly increased the below-ground allocation of dry mass and 14C, especially at the lower night temperature. The δ13C values were more positive at day/night temperatures of 30/20°C than at 30/25°C, and greater in the roots than in the leaves. By plotting the δ13C values of the leaves against the δ13C values of the roots, the slopes of regressions were steeper at low than at high night temperature, also indicating that nocturnal warming reduces carbon allocation below ground to the roots. The results suggest that nocturnal warming may weaken acclimation during water stress in this species by regulating carbon allocation between source and sink organs.  相似文献   

17.
The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0–30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson’s correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.  相似文献   

18.
A specific effect of cardiolipin on fluidity of mitochondrial membranes was demonstrated in Tetrahymena cells acclimated to a lower temperature in the previous report (Yamauchi, T., Ohki, K., Maruyama, H. and Nozawa, Y. (1981) Biochim. Biophys. Acta 649, 385-392). This study was further confirmed by the experiment using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Anisotropy of DPH for microsomal and pellicular total lipids from Tetrahymena cells showed that membrane fluidity of these lipids increased gradually as the cells were incubated at 15 degrees C after the shift down of growth temperature from 39 degrees C. However, membrane fluidity of mitochondrial total lipids was kept constant up to 10 h. This finding is compatible with the result obtained using spin probe in the previous report. Additionally, the break-point temperature of DPH anisotropy was not changed in mitochondrial lipids whereas those temperatures in pellicular and microsomal lipids lowered during the incubation at 15 degrees C. Interaction between cardiolipins and various phospholipids, which were isolated from Tetrahymena cells grown at 39 degrees C or 15 degrees C and synthesized chemically, was investigated extensively using a spin labeling technique. The addition of cardiolipins from Tetrahymena cells grown at either 39 degrees C or 15 degrees C did not change the membrane fluidity (measured at 15 degrees C) of phosphatidylcholine from whole cells grown at 39 degrees C. On the other hand, both cardiolipins of 39 degrees C-grown and 15 degrees C-grown cells decreased the membrane fluidity of phosphatidylcholine from Tetrahymena cells grown at 15 degrees C. The same results were obtained for phosphatidylcholines of mitochondria and microsomes. Membrane fluidity of phosphatidylethanolamine, isolated from cells grown at 15 degrees C, was reduced to a small extent by Tetrahymena cardiolipin whereas that of 39 degrees C-grown cells was not changed. Representative molecular species of phosphatidylcholines of cells grown at 39 degrees C and 15 degrees C were synthesized chemically; 1-palmitoyl-2-oleoylphosphatidylcholine for 39 degrees C-grown cells and dipalmitoleoylphosphatidylcholine for 15 degrees C-grown ones. By the addition of Tetrahymena cardiolipin, the membrane fluidity of 1-palmitoyl-2-oleoylphosphatidylcholine was not changed but that of dipalmitoleoylphosphatidylcholine was decreased markedly. These phenomena were caused by Tetrahymena cardiolipin. However, bovine heart cardiolipin, which has a different composition of fatty acyl chains from the Tetrahymena one, exerted only a small effect.  相似文献   

19.
A glasshouse experiment was conducted with plants of Phaseolus grown in liquid culture. Root growth parameters (biomass, diameter, length, growth rate, zone of cell division), root rheological components (wall extensibility, water potential yield threshold, water potential), shoot growth, carbon allocation, and abscisic acid (ABA) concentration were measured in Phaseolus acutifolius A. Gray at ambient (550 μmol mol-1) and elevated (700 μmol mol-1) atmospheric CO2 concentrations. For contrast, measurements of above- and belowground growth were conducted on Phaseolus vulgaris L. in the same treatments. Under nonlimiting conditions of water and nutrients, elevated CO2 increased root and shoot growth of P. acutifolius but not P. vulgaris. While root mass was increased by nearly 60% in P. acutifolius, there was no effect of atmospheric CO2 on any of the rheological components measured. In contrast, starch and ABA accumulated in roots of P. acutifolius. The concentration of starch in roots of P. acutifolius increased by 10-fold, while root concentrations of ABA doubled. From the data it is concluded that CO2 enrichment is favorable for root growth in some species in that more carbon is allocated to belowground growth. In addition, ABA may play a role in growth responses and/or allocation of photosynthates at elevated CO2 in P. acutifolius.  相似文献   

20.
* The impact of nitrogen (N) supply on the temperature response of root respiratory O(2) uptake (R) was assessed in several herbaceous species grown in solution culture. Warm-grown (25 : 20 degrees C, day:night) plants differing in root N concentration were shifted to 13 : 8 degrees C for 7 d to cold-acclimate. * Log-log plots of root R vs root N concentration both showed that R increased with increasing tissue N concentration, irrespective of the growth temperature. Although the regression slopes of the log-log plots did not differ between the warm-grown and cold-acclimated plants, cold-acclimated plants did exhibit a higher y-axis intercept than their warm-grown counterparts. This suggests that cold acclimation of root R is not entirely dependent on cold-induced increases in tissue N concentration and that scaling relationships (i.e. regression equations fitted to the log-log plots) between root R and N concentration are not fixed. * No systematic differences were found in the short-term Q(10) (proportional change in R per 10 degrees C change in temperature), or degree of cold acclimation (as measured by the proportional difference between warm- and cold-acclimated roots) among roots differing in root N concentration. The temperature response of root R is therefore insensitive to tissue N concentration. * The insensitivity of Q(10) values and acclimation to tissue N concentration raises the possibility that root R and its temperature sensitivity can be predicted for a range of N supply scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号