首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

3.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

4.
Exposure of mouse NB-2a neuroblastoma cells to genotoxic (etoposide or cytosine arabinoside) or nongenotoxic challenges (serum deprivation or okadaic acid) resulted in progressive cell death with biochemical and morphological characteristics typical of apoptosis. Apoptotic cell death induced by nongenotoxic agents was associated with the disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal-DNA fragments, while the formation of HMW-DNA fragments, but not oligonucleosomal-DNA ladder accompanied apoptosis induced by genotoxic agents. Combination of genotoxic and nongenotoxic insults, i.e. incubation of etoposide-treated cells in the serum-free medium, resulted in an additive effect on the profile of DNA disintegration, which involved both HMW fragmentation pattern as in etoposide alone treated cells and the oligonucleosomal-DNA ladder observed with serum-deprived cells. On the other hand, incubation of serum-deprived cells in the presence of Zn2+-ions led to the abrogation of internucleosomal DNA fragmentation but accumulation of HMW-DNA fragments. Differences in the pattern of DNA fragmentation were reproducible in a cell free apoptotic system after treatment of isolated normal nuclei with cytosolic extracts prepared from the cells treated with genotoxic or nogenotoxic apoptotic inducers. Cell free experiments also revealed that activities responsible for the formation of HMW- and oligonucleosomal-DNA fragments are separable in cytosolic extract prepared from the serum-deprived cells. Finally, DNA fragmentation induced by nongenotoxic apoptotic inducers was effectively prevented by cycloheximide and suramin, while both cycloheximide and suramin had only a slight inhibitory effect on DNA fragmentation induced by genotoxic agents. The results presented suggest that distinct pathways underlay disintegration of nuclear DNA during apoptosis induced by genotoxic and nongenotoxic inducers, and that the formation of HMW- and oligonucleosomal-DNA fragments proceeds via separate mechanisms in NB-2a neuroblastoma cells.  相似文献   

5.
6.
7.
Integrin β1 subunit and its downstream molecule integrin‐linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)‐induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v‐crk avian sarcoma virus CT‐10 oncogene homolog (Crk)‐like], which acts also as a component of the integrin pathway, could also affect H/R‐induced injuries in the cardiomyocytes. The rat‐derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal‐regulated kinase1/2 (p‐ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R‐induced apoptosis and cell survival inhibition in rat‐derived H9C2 cardiomyocytes via Bax and downregulation of p‐ERK1/2. It implies that CrkL could mitigate H/R‐induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
目的:探讨右美托咪定(Dex)对缺氧/复氧所致的A549细胞(起源于肺泡Ⅱ型上皮细胞系)损伤及对CCAAT/增强子结合蛋白同源蛋白(CHOP)表达的影响。方法:将处于对数生长期的A549细胞随机分为4组(n=10):常氧培养组(N组),Dex常氧组(D组),缺氧/复氧组(H组),缺氧/复氧+Dex组(HD组)。D组和HD组在造模开始时加入1 nmol/L Dex,N组和D组细胞常氧培养30 h,H组和HD组细胞缺氧6 h,复氧24 h。之后用倒置显微镜观察细胞形态学变化。采用CCK-8法检测A549细胞活力。原位末端标记(TUNEL)法检测A549细胞的凋亡指数(AI)。蛋白免疫印迹法(Western blot)和逆转录-聚合酶链反应(RT-PCR)分别检测A549细胞CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达水平。结果:与N组比较,H组细胞数量减少,细胞形态发生改变。A549细胞的吸光度值明显下降(P<0.01),AI值升高(P<0.01),凋亡细胞数明显增加。CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达显著上升(P<0.01)。与H组相比,HD组细胞损伤减轻,吸光度值上调(P<0.01),凋亡细胞数明显减少(P<0.01)。CHOP、caspase-3蛋白,CHOP mRNA表达降低(P<0.01)。结论:Dex可有效减少缺氧/复氧引起的A549细胞凋亡,其机制可能与Dex对抗CHOP信号通路所致的凋亡有关。  相似文献   

9.
目的:观察外源性精胺对缺氧所致的乳鼠心肌细胞凋亡的影响,并探讨其机制。方法:复制原代培养乳鼠心肌细胞缺氧损伤模型(使用pH=6.8的Hank's平衡盐溶液作为细胞培养基,排出氧气,然后在缺氧箱中培养24 h),细胞随机分为正常对照(Control)组、缺氧(Hypoxia)组和精胺干预(Hypoxia+Sp)组。Western blot检测心肌细胞多胺代谢关键酶(ODC、SSAT)蛋白质表达;CCK-8,Hoechst 33342染色观察细胞凋亡情况;光吸收法检测细胞(或培养液)内T-SOD和Caspase-3/-9活性,MDA、GSH含量;DCFH-DA染色观察细胞内活性氧(ROS)生成。结果:与正常组相比,Hypoxia组SSAT蛋白质表达、细胞凋亡率、MDA含量以及细胞内ROS生成增加,而ODC蛋白质表达、SOD活性、GSH含量降低;与Hypoxia组比较,Sp处理可减轻上述指标的变化。结论:外源性精胺可减轻缺氧引起的乳鼠心肌细胞损伤和凋亡,其机制与恢复多胺稳态和清除活性氧有关。  相似文献   

10.
11.
Ischemia–reperfusion (I/R) injury is a major cause of cardiomyocyte apoptosis after vascular recanalization, which was mimicked by a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes in vitro. In this study, we explored an optimal H/R duration procedure using the AnaeroPack System. To study the H/R procedure, cardiomyocytes were exposed to the AnaeroPack System with sugar and serum-free medium, followed by reoxygenation under normal conditions. Cell injury was detected through lactate dehydrogenase (LDH) and cardiac troponin (c-Tn) release, morphological changes, cell apoptosis, and expression of apoptosis-related proteins. The results showed that the damage to H9c2 cells increased with prolonged hypoxia time, as demonstrated by increased apoptosis rate, LDH and c-Tn release, HIF-1α expression, as well as decreased expression of Bcl-2. Furthermore, hypoxia for 10 h and reoxygenation for 6 h exhibited the highest apoptosis rate and damage and cytokine release; in addition, cells were deformed, small, and visibly round. After 12 h of hypoxia, the majority of the cells were dead. Taken together, this study showed that subjecting H9c2 cells to the AnaeroPack System for 10 h and reoxygenation for 6 h can achieve a practicable and repeatable H/R injury model.  相似文献   

12.
Background information. Cadmium (Cd) is a highly toxic heavy metal that causes changes in plant metabolism through inhibiting photosynthesis and respiration. The effects of Cd on the morphology and function of the chloroplast and mitochondria, as well as on the production and localization of ROS (reactive oxygen species), were studied at the single‐cell level in Arabidopsis. Results. The present study showed that the morphology of chloroplasts changed after Cd treatment, and the photochemical efficiency dramatically declined prior to obvious morphological distortion in the chloroplasts. A quick burst of ROS was detected after Cd treatment. The ROS appeared first in the mitochondria and subsequently in the chloroplast. Simultaneously, the mitochondria clumped irregularly around the chloroplasts or aggregated in the cytoplasm, and the movement of mitochondria was concomitantly blocked. Furthermore, the production of ROS was decreased after pre‐treatment with ascorbic acid or catalase, which prevented inhibition of photosynthesis, organelle changes and subsequent protoplast death. Our results suggest that the distribution and mobility of mitochondria, the morphology of chloroplasts and the accumulation of ROS play important roles in Cd‐induced cell death. The results are in good agreement with previous reports of many types of apoptotic‐like cell death. Conclusion. The changes in the distribution and mobility of mitochondria, and morphology of chloroplasts, as well as the accumulation of ROS, play important roles in Cd‐induced cell death.  相似文献   

13.
目的:探讨外源性硫化氢(H2S)恢复缺氧后适应对衰老H9C2细胞的保护作用及相关机制。方法:H9C2细胞(心肌细胞系)用30 μmol/L过氧化氢(H2O2)处理2 h后再培养3 d,诱导生成衰老细胞。衰老H9C2细胞被随机分5组(n=8):正常组(Control)、缺氧/复氧组(H/R)、H/R+NaHS组、缺氧后适应(PC)组、PC+NaHS组。缺氧/复氧(H/R)模型:衰老H9C2细胞用缺氧液(无血清、无糖培养基,pH=6.8)培养3 h,然后正常培养6 h;缺氧后适应(PC)模型:方法同H/R模型,缺氧结束复氧前连续进行3次5 min间隔的复氧/再缺氧处理,随后复氧6 h。ELISA试剂盒分别检测大鼠晚期糖基化终末产物(AGEs)含量和caspase-3活性;CCK-8试剂盒检测细胞活力;DCFH-DA染色检测活性氧(ROS)水平;Hoechst 33342染色检测细胞凋亡率;Real-time PCR检测相关基因mRNA水平。结果:30 μmol/L H2O2可诱导H9C2细胞衰老但不会导致其凋亡;与Control组比较,H/R和PC均降低细胞活力,增加细胞凋亡率、ROS水平及caspase-3、caspase-9和Bcl-2 mRNA水平(P<0.01);且PC组与H/R组比较,上述指标变化无明显差异;在H/R和PC组加入NaHS,可显著提高细胞活力,降低细胞凋亡率和氧化应激;PC+NaHS对上述指标的作用明显强于H/R+NaHS。结论:外源性H2S能够恢复PC对衰老H9C2细胞的保护作用,其机制与抑制氧化应激和细胞凋亡有关。  相似文献   

14.
The programmed cell death 5 (PDCD5) protein plays an important apoptosis-accelerating role in cells undergoing apoptosis. Decreased expression of PDCD5 has been detected in various human carcinomas. Here we describe that one potent short interfering RNA (siRNA) against the PDCD5 (siPDCD5) specifically inhibits the expression of PDCD5 at both the mRNA and protein level. Cells with decreased PDCD5 expression displayed reduced sensitivity to an apoptotic stimulus induced by Bax overexpression in HeLa, HEK293 and 293T cell lines. Furthermore, we also show that siPDCD5 inhibited both caspase-3 activity and procaspase-3 cleavage. Suppressed expression of PDCD5 attenuates the release of cytochrome c from mitochondria to cytosol induced by Bax overexpression. This phenomenon is accompanied by the reduced translocation of Bax from the cytosol to mitochondria. MTT assay shows that targeted suppression of PDCD5 expression markedly promoted cell proliferation in Hela and HEK293 cell lines. Our data suggests that PDCD5 may exert its effects through pathway of mitochondria by modulating Bax translocation, cytochrome c release and caspase 3 activation directly or indirectly, and that decreased PDCD5 expression may be one of the mechanisms by which tumor cells achieve resistance to apoptotic stimulus induced by anticancer drugs.  相似文献   

15.
Myocardial infarction is a major cause of death worldwide. Despite our understanding of the pathophysiology of myocardial infarction and the therapeutic options for treatment have improved substantially, acute myocardial infarction remains a leading cause of morbidity and mortality. Recent findings revealed that GRP78 could protect myocardial cells against ischemia reperfusion injury‐induced apoptosis, but the exact function and molecular mechanism remains unclear. In this study, we aimed to explore the effects of GRP78 on hypoxia/reperfusion (H/R)‐induced cardiomyocyte injury. Intriguingly, we first observed that GRP78 overexpression significantly protected myocytes from H/R‐induced apoptosis. On mechanism, our work revealed that GRP78 protected myocardial cells from hypoxia/reperfusion‐induced apoptosis via the activation of the Nrf2/HO‐1 signaling pathway. We observed the enhanced expression of Nrf2/HO‐1 in GRP78 overexpressed H9c2 cell, while GRP78 deficiency dramatically antagonized the expression of Nrf2/HO‐1. Furthermore, we found that blocked the Nrf2/HO‐1 signaling by the HO‐1 inhibitor zinc protoporphyrin IX (Znpp) significantly retrieved H9c2 cells apoptosis that inhibited by GRP78 overexpression. Taken together, our findings revealed a new mechanism by which GRP78 alleviated H/R‐induced cardiomyocyte apoptosis in H9c2 cells via the promotion of the Nrf2/HO‐1 signaling pathway.  相似文献   

16.
Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 M) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + -ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 M), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or -ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place during Reox, cultured cardiomyocytes were subjected to hypoxia and Reox. 14C-palmitate was added during Reox to determine the KCI profile. Succinate had not increased during Reox. In conclusion, calcium- and ADP-Mg-induced respiratory uncoupling is due to oxygen free radical generation through excess matrix accumulation of succinate. The phenomenon does not occur during reoxygenation because of a total restoration of mitochondrial magnesium and/or ADP concentration.  相似文献   

17.
Myocardial infarctions and stroke arise primarily as a result of hypoxia/ischemia-induced cell injury. However, the molecular mechanism of cardiac cell death due to hypoxia has not been elucidated. We showed here that chemical hypoxia induced by 1 mM azide triggered apoptosis of isolated neonatal rat ventricular cardiac myocytes but had no effect on cardiac fibroblasts. The azide-induced cardiomyocyte apoptosis could be characterized by a reversible initiation phase (0-6 h after azide exposure) during which cytosolic ATP levels remained little affected. This was followed by an irreversible execution phase (12-18 h) exhibiting prominent internucleosomal DNA fragmentation, cell membrane leakage, mitochondrial dysfunction, and increased calpain messenger RNA. Blocking extracellular calcium influx or intracellular calcium release was each effective in suppressing myocyte apoptosis. Cell death was also found to be mediated by calcium sensitive signal transduction events based on the use of specific antagonists. Consistent with the induction of calpain expression during apoptosis, blocking de novo protein synthesis and calpain activity inhibited cell death. These regulatory features coupled with the ease of the cell system suggest that the myocyte apoptosis model described here should be useful in the study of events leading to the demise of the myocardium.  相似文献   

18.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   

19.
Cardiovascular disease is a leading cause of death worldwide. Loss of function or death of cardiomyocytes is a major contributing factor to these diseases. Cell death in conditions such as heart failure and myocardial infarction is associated with apoptosis. Apoptotic pathways have been well studied in non-myocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane-bound death receptors, release of pro-apoptotic factors from mitochondria or stress at the endoplasmic reticulum. The key regulators of apoptosis include inhibitors of caspases (IAPs), the Bcl-2 family of proteins, growth factors, stress proteins, calcium and oxidants. The highly organized and predictive nature of apoptotic signaling means it is amenable to manipulation. A thorough understanding of the apoptotic process would facilitate intervention at the most suitable points, alleviating myocardium decline and dysfunction. This review summarizes the mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways. We also discuss how the potential therapeutic value of these molecules could be harnessed.  相似文献   

20.
目的: 观察过氧化物酶体增殖物激活受体δ(PPARδ)激动剂GW501516对低氧原代大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响,并探讨其可能机制,为低氧肺血管重构的防治寻找新靶点。方法: 对照组PASMCs采用21%氧气培养,低氧组采用 3%氧气诱导PASMCs增殖,通过不同浓度的GW501516(10、30、100 nmol/L)低氧条件下孵育PASMCs 12、24、48 h筛选GW501516抑制低氧PASMCs增殖的最适浓度;选择100 nmol/L GW501516和(或)蛋白激酶B(AKT)激动剂SC79在低氧条件下孵育PASMCs 24 h,探讨GW501516抑制PASMCs增殖可能机制,通过CCK-8与BrdU试剂盒检测细胞增殖与DNA的合成,流式细胞仪分析细胞周期,实时定量PCR(RT-PCR)检测细胞周期蛋白(Cyclin)D1,细胞周期蛋白激酶抑制蛋白p27(p27)mRNA的表达,Western blot检测PPARδ、总的和磷酸化蛋白激酶B(AKT)与糖原合酶激酶3β(GSK3β)的表达。结果: 与低氧组相比,不同浓度的GW501516(10、30、100 nmol/L)干预12、24、48 h后能够抑制低氧条件下PASMCs增殖与DNA的合成,且100 nmol/L GW501516抑制作用最强(P<0.05或P<0.01);与对照组相比,100 nmol/L GW501516干预PASMCs 24 h能够显著上调PPARδ的表达,而低氧可显著下调PPARδ的表达(P<0.01);与低氧组相比,100 nmol/L GW501516干预24 h后能够显著抑制PASMCs增殖与DNA的合成(P<0.01),增加处于G0/G1期的PASMCs比例,明显减少S期和G2/M期的PASMCs比例(P<0.05 或P<0.01),显著抑制Cyclin D1 mRNA的表达并促进p27 mRNA的表达(P< 0.01),显著抑制AKT与GSK3β磷酸化(P<0.01),而与100 nmol/L GW501516低氧组相比,AKT激动剂SC79能够逆转100 nmol/L GW501516 上述作用(P<0.05或P<0.01)。结论: GW501516通过抑制AKT/GSK3β信号通路抑制低氧条件下PASMCs增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号