共查询到20条相似文献,搜索用时 125 毫秒
1.
Canying Liu Huajun Zheng Minjun Yang Zhuofei Xu Xiangru Wang Liuya Wei Biao Tang Feng Liu Yanyan Zhang Yi Ding Xibiao Tang Bin Wu Timothy J. Johnson Huanchun Chen Chen Tan 《BMC genomics》2015,16(1)
Background
Strains of extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize extraintestinal sites and cause a wide range of infections. Genomic analysis of ExPEC has mainly focused on isolates of human and avian origins, with porcine ExPEC isolates yet to be sequenced. To better understand the genomic attributes underlying the pathogenicity of porcine ExPEC, we isolated two E. coli strains PCN033 and PCN061 from pigs, assessed their in vivo virulence, and completed and compared their genomes.Results
Animal experiments demonstrated that strain PCN033, but not PCN061, was pathogenic in a pig model. The chromosome of PCN033 was 384 kb larger than that of PCN061. Among the PCN033-specific sequences, genes encoding adhesins, unique lipopolysaccharide, unique capsular polysaccharide, iron acquisition and transport systems, and metabolism were identified. Additionally, a large plasmid PCN033p3 harboring many typical ExPEC virulence factors was identified in PCN033. Based on the genetic variation between PCN033 and PCN061, corresponding phenotypic differences in flagellum-dependent swarming motility and metabolism were verified. Furthermore, the comparative genomic analyses showed that the PCN033 genome shared many similarities with genomic sequences of human ExPEC strains. Additionally, comparison of PCN033 genome with other nine characteristic E. coli genomes revealed 425 PCN033-special coding sequences. Genes of this subset included those encoding type I restriction-modification (R-M) system, type VI secretion system (T6SS) and membrane-associated proteins.Conclusions
The genetic and phenotypic differences between PCN033 and PCN061 could partially explain their differences in virulence, and also provide insight towards the molecular mechanisms of porcine ExPEC infections. Additionally, the similarities between the genomes of PCN033 and human ExPEC strains suggest that some connections between porcine and human ExPEC strains exist. The first completed genomic sequence for porcine ExPEC and the genomic differences identified by comparative analyses provide a baseline understanding of porcine ExPEC genetics and lay the foundation for their further study.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1890-9) contains supplementary material, which is available to authorized users. 相似文献2.
Schouler C Taki A Chouikha I Moulin-Schouleur M Gilot P 《Journal of bacteriology》2009,191(1):388-393
Prebiotics such as fructooligosaccharides (FOS) are increasingly being used in some countries for improving human and animal health and as an alternative to antibiotic growth promoters in animals, with various degrees of success. It has been observed that FOS stimulate the proliferation of probiotic bacteria and, at the same time, decrease the population of bacteria associated with disease. This observation assumes that pathogenic bacteria do not metabolize FOS and, therefore, lose their competitive advantage over beneficial bacteria. Here we present evidence that some pathogenic Escherichia coli strains can metabolize FOS and show that this property helps the bacterium colonize the intestine. These findings highlight the potential risk that a high level of prebiotic usage could lead to the emergence of well-adapted pathogenic strains that metabolize prebiotic substances. 相似文献
3.
Johnson TJ Kariyawasam S Wannemuehler Y Mangiamele P Johnson SJ Doetkott C Skyberg JA Lynne AM Johnson JR Nolan LK 《Journal of bacteriology》2007,189(8):3228-3236
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs. 相似文献
4.
抑制差减杂交筛选禽致病性大肠杆菌基因组差异片段及其分析 总被引:6,自引:2,他引:6
采用抑制差减杂交技术(Suppression subtractive hybridization,SSH)对禽致病性大肠杆菌E037株(血清型O78)与非致病菌株K-12MG1655以及同一O2血清型高致病菌株E058与低致病菌株E526进行基因组差异片段克隆与分析。从E037株中共检出17个特异性差异片段,E058株中共检出32个特异性差异片段。经同源分析,这些序列可分为4类:质粒相关序列、噬菌体相关序列、已知功能序列、未知功能序列。这些差异片段包含许多重要的大肠杆菌毒力相关基因,如大肠杆菌素、气杆菌素受体、铁基因簇等。49个片段中,14个片段与其它微生物基因组同源性较高。结果表明,大肠杆菌高致病株与低致病菌株或非致病菌株基因组间存在较多差异基因,其中包括毒力、毒力相关基因、代谢以及噬菌体等基因成分。 相似文献
5.
Diard M Baeriswyl S Clermont O Gouriou S Picard B Taddei F Denamur E Matic I 《Microbes and infection / Institut Pasteur》2007,9(2):214-223
Extraintestinal pathogenic Escherichia coli (ExPEC) strains cause disease by invading normally sterile niches within the host body, e.g., urinary tract, blood and cerebrospinal fluid. Infections due to ExPEC strains, in particular urinary tract infections, cause considerable morbidity and significant health-care costs. The goal of our study is to evaluate whether Caenorhabditis elegans can be used as a model to study phenotypic and genetic virulence determinants of ExPEC strains. For this purpose, we used a collection of 31 E. coli strains isolated during acute extra-intestinal infections or from the feces of healthy individuals. For all strains, the phylogeny, the presence of ExPEC virulence factors, the resistance to biologically relevant stressors (bile, human serum and lysozyme), the motility, the growth rate, the virulence in C. elegans and in a murine septicaemia model has been established. The results show that there is a strong link between virulence in C. elegans and certain phenotypic and genetic virulence predictors of ExPEC strains determinable in vitro. Furthermore, there is a significant correlation between virulence of different ExPEC strains in C. elegans and in the murine model. Therefore, our results suggest that C. elegans can be used as a model to study virulence determinants of ExPEC strains. 相似文献
6.
应用DNA芯片研究禽致病性大肠杆菌可能致病基因的表达.构建禽致病性大肠杆菌毒力基因、潜在毒力基因的DNA芯片,应用基因芯片技术对同属O2血清型的禽高致病性大肠杆菌E058株和低致病性大肠杆菌E526株在体外LB培养基和鸡血清培养状态下进行差异表达分析.结果:在体外LB静置培养状态下,低致病株E526与高致病株E058相比共有16个差异基因,均为下调基因.在鸡血清静置培养中,E526与E058相比共有15个差异基因,均为下调基因.应用基因芯片成功筛选了禽致病性大肠杆菌在体外不同条件下的毒力基因及可能毒力基因中差异表达基因,表明一些铁摄取系统相关基因对APEC的毒力较重要,同时也筛选出了一些新的可能致病基因aes-1,aes-2,aes-3,aes-4,aes-6,aes-8,aes-10,aes-13,aes-15,aes-31等. 相似文献
7.
A subset of extraintestinal pathogenic Escherichia coli is zoonotic and has developed strategies to adapt to different host-specific environments. However, the underlying mechanisms of these adaptive strategies have yet to be discerned. Here, the proteomic response of an avian pathogenic E. coli strain, which appears indistinguishable from neonatal meningitis E. coli, was compared following growth in human and avian sera to determine whether it uses the same mechanisms to overcome the antibacterial effects of sera from different host species. Proteins involved in biosynthesis of iron receptors were up-regulated under both sera, suggesting that serum, regardless of the host of origin, is an iron-limited environment. However, several proteins involved in synthesis of nucleic acids, sulfur-containing amino acids and fatty acids, were differentially expressed in response to the sera from different hosts. Mutational analysis showed that this APEC strain required nucleotide biosynthesis during incubation in human, but not avian serum, and deletion of genes involved in the biosynthesis of sulfur-containing amino acids increased its resistance to human serum. Continued investigation of the proteome of 'zoonotic' ExPEC strains, grown under other 'dual' host conditions, will contribute to our understanding of ExPEC pathogenesis and host specificity and development of effective therapies and control strategies. 相似文献
8.
Extraintestinal pathogenic Escherichia coli (ExPEC) use siderophores to sequester iron during infection. Enterobactin and salmochelins are catecholate siderophores produced by some ExPEC strains and other pathogenic enterobacteria. Siderophore export and synthesis mutants of avian ExPEC strain χ7122 were tested in a chicken infection model. In single-strain infections, siderophore-negative (ΔentDΔiuc), ΔentS and ΔentSΔiroC export mutants were attenuated in tissues and blood, whereas the ΔiroC export mutant was only attenuated in blood. Interestingly, the ΔentD mutant, producing only aerobactin, retained full virulence, and loss of entD in the ΔentSΔiroC mutant restored virulence. LC-MS/MS quantification of siderophores in export mutants demonstrated that loss of entS impaired enterobactin and mono-glucosylated enterobactin secretion, whereas loss of iroC impaired di- and tri-glucosylated enterobactin secretion. Loss of entS and/or iroC resulted in intracellular accumulation and increased secretion of siderophore monomers. Catecholate siderophore export mutants also demonstrated decreased fitness in a co-challenge infection model. By contrast, catecholate siderophore synthesis mutants (ΔentD and ΔiroB) competed as well as the wild-type strain. Results establish that EntS and IroC mediate specific export of catecholate siderophores and the role of these exporters for ExPEC virulence is contingent on enterobactin synthesis, which is not required when other siderophores like aerobactin are functional. 相似文献
9.
The analysis of metabolic pathways with mathematical models contributes to the better understanding of the behavior of metabolic processes. This paper presents the analysis of a mathematical model for carbohydrate uptake and metabolism in Escherichia coli. It is shown that the dynamic processes cover a broad time span from some milliseconds to several hours. Based on this analysis the fast processes could be described with steady-state characteristic curves. A subsequent robustness analysis of the model parameters shows that the fast part of the system may act as a filter for the slow part of the system; the sensitivities of the fast system are conserved. From these findings it is concluded that the slow part of the system shows some robustness against changes in parameters of the fast subsystem, i.e. if a parameter shows no sensitivity for the fast part of the system, it will also show no sensitivity for the slow part of the system. 相似文献
10.
Restricted iron availability is a major obstacle to growth and survival of pathogenic bacteria during infection. In contrast to Gram-negative pathogens, little is known about how Gram-positive pathogens obtain this essential metal. We have identified two Streptococcus pneumoniae genetic loci, pit1 and pit2, encoding homologues of ABC iron transporters that are required for iron uptake by this organism. S. pneumoniae strains containing disrupted copies of either pit1 or pit2 had decreased sensitivity to the iron-dependent antibiotic streptonigrin, and a strain containing disrupted copies of both pit1 and pit2 was unable to use haemoglobin as an iron source and had a reduced rate of iron uptake. The pit2- strain was moderately and the pit1-/pit2- strain strongly attenuated in virulence in mouse models of pulmonary and systemic infection, showing that the pit loci play a critical role during in vivo growth of S. pneumoniae. The pit2 locus is contained within a 27 kb region of chromosomal DNA that has several features of Gram-negative bacterial pathogenicity islands. This probable pathogenicity island (PPI-1) is the first to be described for S. pneumoniae, and its acquisition is likely to have played a significant role in the evolution of this important human pathogen. 相似文献
11.
ABSTRACT: BACKGROUND: Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) are the two main subsets of extraintestinal pathogenic E. coli (ExPEC). Both types have multiple iron acquisition systems, including heme and siderophores. Although iron transport systems involved in the pathogenesis of APEC or UPEC have been documented individually in corresponding animal models, the contribution of these systems during simultaneous APEC and UPEC infection is not well described. To determine the contribution of each individual iron acquisition system to the virulence of APEC and UPEC, isogenic mutants affecting iron uptake in APEC E058 and UPEC U17 were constructed and compared in a chicken challenge model. RESULTS: Salmochelin-defective mutants E058DeltairoD and U17DeltairoD showed significantly decreased pathogenicity compared to the wild-type strains. Aerobactin defective mutants E058DeltaiucD and U17DeltaiucD demonstrated reduced colonization in several internal organs, whereas the heme defective mutants E058DeltachuT and U17DeltachuT colonized internal organs to the same extent as their wild-type strains. The triple mutant DeltachuTDeltairoDDeltaiucD in both E058 and U17 showed decreased pathogenicity compared to each of the single mutants. The histopathological lesions in visceral organs of birds challenged with the wild-type strains were more severe than those from birds challenged with DeltairoD, DeltaiucD or the triple mutants. Conversely, chickens inoculated with the DeltachuT mutants had lesions comparable to those in chickens inoculated with the wild-type strains. However, no significant differences were observed between the mutants and the wild-type strains in resistance to serum, cellular invasion and intracellular survival in HD-11, and growth in iron-rich or iron-restricted medium. CONCLUSIONS: Results indicated that APEC and UPEC utilize similar iron acquisition mechanisms in chickens. Both salmochelin and aerobactin systems appeared to be important in APEC and UPEC virulence, while salmochelin contributed more to the virulence. Heme bounded by ChuT in the periplasm appeared to be redundant in this model, indicating that other periplasmic binding proteins likely contributed to the observed no phenotype for the heme uptake mutant. No differences were observed between the mutants and their wild-type parents in other phenotypic traits, suggesting that other virulence mechanisms compensate for the effect of the mutations. 相似文献
12.
[目的]检测禽致病性大肠杆菌IMT5155自分泌黏附素基因等具有代表性的疑似毒力基因在不同来源大肠杆菌中的分布,为进一步研究其致病机理提供依据.[方法]采用PCR和Dot blot,检测疑似毒力基因在不同地区(101株大肠杆菌中国分离株和121株大肠杆菌德国分离株)、不同来源(人源、禽源及猪源)大肠杆菌中的分布,并分析其和大肠杆菌系统进化分群的关系.[结果]自分泌黏附素基因B11等11个疑似毒力基因在禽致病性大肠杆菌中分布率较高,阳性率分别为:A1 36.4%(32/88)、A8 53.4%(47/88)、A1063.6%(56/88)、B1137.5%(33/88)、F3 59.1%(52/88)等,且疑似毒力基因主要存在于大肠杆菌B2进化群中.值得注意的是,D1、E9和F11基因片段在新生儿脑膜炎大肠杆菌中有较高的分布率,分别为60%(6/10)、80%(8/10)和90%(9/10),而在新生儿脑膜炎大肠杆菌中未检测到B11基因.[结论]自分泌黏附素B11等疑似毒力基因与禽致病性大肠杆菌关系密切,但疑似毒力基因D1、E9和F11与新生儿脑膜炎大肠杆菌密切相关,提示禽致病性大肠杆菌可能是新生儿脑膜炎大肠杆菌的毒力基因储库. 相似文献
13.
Y Ding X Tang P Lu B Wu Z Xu W Liu R Zhang W Bei H Chen C Tan 《BMC veterinary research》2012,8(1):140
ABSTRACT: BACKGROUND: Extraintestinal pathogenic Escherichia coli (ExPEC) can cause a variety of infections outside the gastrointestinal tract in humans and animals. Infections due to swine ExPECs have been occurring with increasing frequency in China. These ExPECs may now be considered a new food-borne pathogen that causes cross-infections between humans and pigs. Knowledge of the clonal structure and virulence genes is needed as a framework to improve the understanding of phylogenetic traits of porcine ExPECs. RESULTS: Multilocus sequence typing (MLST) data showed that the isolates investigated in this study could be placed into four main clonal complexes, designated as CC10, CC1687, CC88 and CC58. Strains within CC10 were classified as phylogroup A, and these accounted for most of our porcine ExPEC isolates. Isolates in the CC1687 clonal complex, formed by new sequence types (STs), was classified as phylogroup D, with CC88 isolates considered as B2 and CC58 isolates as B1. Porcine ExPECs in these four clonal complexes demonstrated significantly different virulence gene patterns. A few porcine ExPECs were indentified in phylogroup B2, the phylogroup in which human ExPECs mainly exist. However some STs in the four clonal groups of porcine ExPECs were reported to cause extraintestinal infections in human, based on data in the MLST database. CONCLUSION: Porcine ExPECs have different virulence gene patterns for different clonal complexes. However, these strains are mostly fell in phylogenentic phylogroup A, B1 and D, which is different from human ExPECs that concentrate in phylogroup B2. Our findings provide a better understanding relating to the clonal structure of ExPECs in diseased pigs and indicate a need to re-evaluate their contribution to human ExPEC diseases. 相似文献
14.
Bélanger L Garenaux A Harel J Boulianne M Nadeau E Dozois CM 《FEMS immunology and medical microbiology》2011,62(1):1-10
Extraintestinal pathogenic Escherichia coli (ExPEC) are an important cause of urinary tract infections, neonatal meningitis and septicaemia in humans. Animals are recognized as a reservoir for human intestinal pathogenic E. coli, but whether animals are a source for human ExPEC is still a matter of debate. Pathologies caused by ExPEC are reported for many farm animals, especially for poultry, in which colibacillosis is responsible for huge losses within broiler chickens. Cases are also reported for companion animals. Commensal E. coli strains potentially carrying virulence factors involved in the development of human pathologies also colonize the intestinal tract of animals. This review focuses on the recent evidence of the zoonotic potential of ExPEC from animal origin and their potential direct or indirect transmission from animals to humans. As antimicrobials are commonly used for livestock production, infections due to antimicrobial-resistant ExPEC transferred from animals to humans could be even more difficult to treat. These findings, combined with the economic impact of ExPEC in the animal production industry, demonstrate the need for adapted measures to limit the prevalence of ExPEC in animal reservoirs while reducing the use of antimicrobials as much as possible. 相似文献
15.
The extent and nature of DNA polymorphism in the mutS-rpoS region of the Escherichia coli genome were assessed in 21 strains of enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) and in 6 strains originally isolated from natural populations. The intervening region between mutS and rpoS was amplified by long-range PCR, and the resulting amplicons varied substantially in length (7.8 to 14.2 kb) among pathogenic groups. Restriction maps based on five enzymes and sequence analysis showed that strains of the EPEC 1, EPEC 2, and EHEC 2 groups have a long mutS-rpoS region composed of a approximately 6.0-kb DNA segment found in strain K-12 and a novel DNA segment ( approximately 2.9 kb) located at the 3' end of rpoS. The novel segment contains three genes (yclC, pad1, and slyA) that occur in E. coli O157:H7 and related strains but are not found in K-12 or members of the ECOR group A. Phylogenetic analysis of the common sequences indicates that the long intergenic region is ancestral and at least two separate deletion events gave rise to the shorter regions characteristic of the E. coli O157:H7 and K-12 lineages. 相似文献
16.
Septicemic Escherichia coli 4787 (O115: K-: H51: F165) of porcine origin possess gene clusters related to extraintestinal E. coli fimbrial adhesins. This strain produces two fimbriae: F165(1) and F165(2). F165(1) (Prs-like) belongs to the P fimbrial family, encoded by foo operon and F165(2) is a F1C-like encoded by fot operon. Data from this study suggest that these two operons are part of two PAIs. PAI I(4787) includes a region of 20 kb, which not only harbors the foo operon but also contains a potential P4 integrase gene and is located within the pheU tRNA gene, at 94 min of the E. coli chromosome. PAI II(4787) includes a region of over 35 kb, which harbors the fot operon, iroBCDEN gene clusters, as well as part of microcin M genes and nonfunctional mobility genes. PAI II(4787) is found between the proA and yagU at 6 min of the E. coli chromosome. 相似文献
17.
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX. 相似文献
18.
19.
Weissman SJ Chattopadhyay S Aprikian P Obata-Yasuoka M Yarova-Yarovaya Y Stapleton A Ba-Thein W Dykhuizen D Johnson JR Sokurenko EV 《Molecular microbiology》2006,59(3):975-988
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements. 相似文献
20.
禽致病性大肠杆菌gspL基因缺失株构建及生物学特性 总被引:1,自引:0,他引:1
【目的】研究gsp L基因缺失对禽致病性大肠杆菌(Avian pathogenic Escherichia coli,APEC)生物学特性的影响。【方法】利用Red重组方法构建禽致病性大肠杆菌DE17株的gsp L缺失株;分析野生株与缺失株的生长特性、黏附和入侵DF1细胞的差异;采用荧光定量PCR的方法比较野生株和缺失株毒力基因转录水平的变化;比较野生株与缺失株的半数致死量(LD50)差异。【结果】gsp L缺失不影响DE17的生长特性,但其黏附和入侵DF1细胞能力显著下调。荧光定量PCR检测结果表明,缺失株毒力基因lux S,pfs,fyu A和iss转录水平明显上调,tsh的转录水平明显下调,而vat,ibe A,stx2f和omp A的转录水平无显著变化;LD50检测结果表明,缺失株比野生株毒力增强了12倍。【结论】gsp L基因的缺失不影响禽致病性大肠杆菌的生长特性,但能减弱其黏附和入侵能力,且可以正调控禽致病性大肠杆菌部分毒力基因的转录水平,推测gsp L基因可能与APEC对宿主的致病性有关。 相似文献