首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A protein, the mediatophore, has been purified from Torpedo electric organ presynaptic plasma membranes. This protein mediates the release of acetylcholine through artificial membranes when activated by calcium and is made up of 15-kDa proteolipid subunits. After immunization with purified delipidated mediatophore, monoclonal antibodies binding to the 15-kDa proteolipid band on Western blots of purified mediatophore were selected. A 15-kDa proteolipid antigen was also detected in cholinergic synaptic vesicles. Using an immunological assay, it was estimated that presynaptic plasma membranes and synaptic vesicles contain similar proportions of 15-kDa proteolipid antigen. Detection by immunofluorescence in the electric organ showed that only nerve endings were labeled. In electric lobes, the staining was associated with intracellular membranes of the electroneuron cell bodies and in axons. Nerve endings at Torpedo neuromuscular junctions were also labeled with anti-15-kDa proteolipid monoclonal antibodies.  相似文献   

2.
The mediatophore is a presynaptic membrane protein that has been shown to translocate acetylcholine (ACh) under calcium stimulation when reconstituted into artificial membranes. The mediatophore subunit, a 15-kDa proteolipid, presents a very high sequence homology with the N,N'-dicyclohexylcarbodiimide (DCCD)-binding proteolipid subunit of the vacuolar-type H(+)-ATPase. This prompted us to study the effect of DCCD, a potent blocker of proton translocation, on calcium-dependent ACh release. The present work shows that DCCD has no effect on ACh translocation either from Torpedo synaptosomes or from proteoliposomes reconstituted with purified mediatophore. However, using [14C]DCCD, we were able to demonstrate that the drug does bind to the 15-kDa proteolipid subunit of the mediatophore. These results suggest that although the 15-kDa proteolipid subunits of the mediatophore and the vacuolar H(+)-ATPase may be identical, different domains of these proteins are involved in proton translocation and calcium-dependent ACh release and that the two proteins have a different membrane organization.  相似文献   

3.
Two proteins of the presynaptic plasma membrane, syntaxin and SNAP 25, and VAMP/synaptobrevin, a synaptic vesicle membrane protein, form stable protein complexes which are involved in the docking and fusion of synaptic vesicles at the mammalian brain presynaptic membrane. Similar protein complexes were revealed in an homogeneous population of cholinergic synaptosomes purified from Torpedo electric organ by combining velocity sedimentation and immunoprecipitation experiments. After CHAPS solubilization, virtually all the nerve terminal syntaxin was found in the form of large 16 S complexes, in association with 65% of SNAP 25 and 15% of VAMP. Upon Triton X100 solubilization, syntaxin was still recovered in association with SNAP 25 and VAMP but in smaller 8 S complexes. A small (2–5%) percentage of the nerve terminal 15 kDa proteolipid subunit of the v-H+ ATPase and of mediatophore was copurified with syntaxin, using two different antisyntaxin monoclonal antibodies. The use of an homogeneous population of peripheral cholinergic nerve terminals allowed us to extend results on the composition of the brain presynaptic protein complexes to the Torpedo electric organ synapse, a model of the rapid neuromuscular synapses. Copyright © 1996 Elsevier Science Ltd  相似文献   

4.
5.
Abstract: Mediatophore is a protein that translocates acetylcholine (ACh) on calcium action. It is a homopolymer of a 15-kDa proteolipid that is also a constituent of the membrane sector of vacuolar H+-adenosine trisphosphatase (V-ATPase; vacuolar proton pump). Experiments on neuroblastoma cell lines (N18TG-2) that are deficient for ACh release and on cells that are competent for release, such as the glioma C6BU-1 or the N18TG-2/C6BU-1 fusion product NG108-15, show that there is a correlation between ACh release and the 15-kDa proteolipid content of the cell membrane. In another cell line, L-M(TK), it has been possible to up-regulate ACh release and the membrane proteolipid content after treating the cells with dibutyryl-cyclic AMP or dexamethasone. As mediatophore translocates ACh and as V-ATPase may help vesicular ACh storage, it was interesting to determine the respective role of the two proteins in the observed correlation between release and proteolipid content. After blocking vesicular loading with vesamicol, we did not affect release from these cells, suggesting that the observed correlation may be attributed to mediatophore. The acquisition of an ACh release mechanism would then depend on the process that guides the proteolipid to the plasma membrane of the cell.  相似文献   

6.
Mediatophore is a nerve terminal membrane protein purified from Torpedo electric organ on its ability to translocate acetylcholine upon calcium action. An antiserum able to immunoprecipitate mediatophore activity was used to study the subcellular distribution of this protein. The presynaptic membrane exhibited a strong and discontinuous immunogold labelling, especially at the active zone where ACh is thought to be released. Two antigens were recognized on immunoblots of synaptosomal membranes: the 15-kDa subunit of mediatophore and a 14-kDa membrane protein that has a wide non-neuronal distribution. Antibodies purified from the serum on native mediatophore and monospecific towards the 15-kDa antigen still gave a high presynaptic membrane localized labelling. In addition, a few 14-kDa protein sites were present at the active zone. The Schwann cell finger interposed between the presynaptic membrane and the postsynaptic arch also exhibited the 14-kDa antigen raising the question of a possible interaction of mediatophore with the 14-kDa protein originating from the Schwann cell.  相似文献   

7.
8.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

9.
The present report shows that mediatophore, a nerve terminal membrane protein that translocates acetylcholine on calcium action, forms a complex with a 14-kDa polypeptide. The complex was identified based on the following results. (a) A polyclonal antimediatophore antiserum that immunoprecipitates activity precipitates both the 15- and 14-kDa polypeptides. (b) After HPLC purification of mediatophore, both antigens were found in the same peak. (c) After 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate solubilization of presynaptic membranes or of the purified mediatophore, an immunoaffinity column made with the anti-14-kDa antigen monoclonal antibody retained both the 14-kDa and the 15-kDa polypeptide. Similarly, immunoprecipitation experiments using protein A-coated beads sedimented an immunocomplex in which both antigens were found. (d) The 14-kDa antigen could be localized in the synaptosomal membrane where mediatophore and its 15-kDa component are found.  相似文献   

10.
M H Sato  M Maeshima  Y Ohsumi  M Yoshida 《FEBS letters》1991,290(1-2):177-180
Vacuolar membrane H+-translocating pyrophosphatase (H+-PPase) was purified from pumpkin seedlings. Its enzymatic properties including molecular size of constituting polypeptide (75 kDa) were very similar to those of mung bean H+-PPase [(1989) J. Biol. Chem. 264, 20068–20073]. The native, functional molecular size of the pumpkin H+-PPase was estimated to be 135–139 kDa from gel permeation HPLC of the purified enzyme in the presence of detergent and from radiation inactivation of the enzyme in vacuolar membranes. It is concluded that native, functional pumpkin H+-PPase, and also probably H+-PPases from other plants, is a dimer of 75 kDa subunits.  相似文献   

11.
A cDNA (T3-L) encoding the 16 kDa subunit of vacuolar H(+)-ATPase was cloned from a cDNA library of rat liver. A polypeptide of 155 amino acids with a molecular mass of 15,807 Da (pI = 9.5) having four hydrophobic stretches was predicted. T3-L polypeptide was 92% and 100% identical with the 16 kDa proteolipid of bovine chromaffin granule and that of mouse, respectively. Antisera raised against the NH2-terminal of the T3-L polypeptide reacted positively with the membrane ghosts of rat liver tritosomes and the partially purified H(+)-ATPase thereof. Western blotting of subcellular fractions with the antisera showed high abundance of 16 kDa protein in the lysosomes, although a significant amount was also detected in the Golgi apparatus. Western blotting of rat tissues revealed high levels of 16 kDa proteolipid in the brain and the kidney. Northern blots with T3-L similarly showed considerably high expression of T3-L mRNA in the brain and the kidney. Southern hybridization of rat genomic DNA with T3-L showed at most three distinct bands, regardless of the stringency of hybridization and whether hybridization was performed with its subfragments. This suggests the possibility of multiple (at least three) homologous/identical genes encoding 16 kDa proteolipid. The possible presence and significance of isoforms of 16 kDa proteolipid in rats are discussed.  相似文献   

12.
The macrolide antibiotic concanamycin is a potent and specific inhibitor of the vacuolar H(+)-ATPase (V-ATPase), binding to the V(0) membrane domain of this eukaryotic acid pump. Although binding is known to involve the 16 kDa proteolipid subunit, contributions from other V(0) subunits are possible that could account for the apparently different inhibitor sensitivities of pump isoforms in vertebrate cells. In this study, we used a fluorescence quenching assay to directly examine the roles of V(0) subunits in inhibitor binding. Pyrene-labeled V(0) domains were affinity purified from Saccharomyces vacuolar membranes, and the 16 kDa proteolipid was subsequently extracted into chloroform and methanol and purified by size exclusion chromatography. Fluorescence from the isolated proteins was strongly quenched by nanomolar concentrations of both concanamycin and an indolyl pentadieneamide compound, indicating high-affinity binding of both natural macrolide and synthetic inhibitors. Competition studies showed that these inhibitors bind to overlapping sites on the proteolipid. Significantly, the 16 kDa proteolipid in isolation was able to bind inhibitors as strongly as V(0) did. In contrast, proteolipids carrying mutations that confer resistance to both inhibitors showed no binding. We conclude that the extracted 16 kDa proteolipid retains sufficient fold to form a high-affinity inhibitor binding site for both natural and synthetic V-ATPase inhibitors and that the proteolipid contains the major proportion of the structural determinants for inhibitor binding. The role of membrane domain subunit a in concanamycin binding and therefore in defining the inhibitor binding properties of tissue-specific V-ATPases is critically re-assessed in light of these data.  相似文献   

13.
Summary Antisera were raised to cholinergic presynaptic plasma membranes and synaptic vesicles isolated from the electric organ of Torpedo marmorata and tested by immunochemical and immunohistochemical methods. The antisera responded to many antigens not specific to nerve endings, but it was possible to eliminate these antibodies by means of simple absorption procedures with fractions containing the unwanted antigens. After absorption, staining of thin sections of electric organ by immunofluorescence was limited to the region of nerve endings in the tissue.The remaining antibodies responded in the case of the plasma membrane antisera predominantly to a 33,000 molecular-weight polypeptide and a chloroform/methanol-soluble antigen. In cross reactivity studies it was found that this antiserum not only stains cholinergic nerve endings in Torpedo but also those in mammalian tissue. The antigen responsible for the cross reactivity is restricted to the chloroform/methanol-soluble material.The vesicle antiserum labels cholinergic nerve endings in mammalian tissue as well; the relevant antigen in this case is different from the one described above and is likely to be a glycosaminoglycan. The antisera provide valuable markers for cholinergic nerve terminals. In addition, the vesicle antiserum may now be used to study axonal transport and the life cycle of this organelle in the cholinergic neurone.Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - EGTA ethylenebis (oxoethylenenitrilo) tetra-acetic acid - MW apparent molecular weight Enzymes. Na+, K+-activated ATPase (EC 3.6.1.3); acetylcholine esterase (EC 3.1.1.7); choline acetyl-transferase (EC 2.3.1.6)  相似文献   

14.
Abstract: During the process of docking and fusion of synaptic vesicles to the presynaptic membrane, several presynaptic proteins bind sequentially to a core complex associating two proteins of the presynaptic membrane, syntaxin and SNAP 25, and a protein of synaptic vesicles, VAMP/synaptobrevin. We have immunoprecipitated this core complex after CHAPS solubilization of pure cholinergic synaptosomes of Torpedo electric organ, using anti-syntaxin or anti-VAMP immunobeads. In parallel, we studied syntaxin and VAMP, which are transported by the rapid axonal flow to the nerve endings. We found that syntaxin and VAMP accumulating at the proximal end of an electric nerve ligature were already engaged in complexes, as in synaptosomes. In unligated nerves also, significant amounts of VAMP associate with syntaxin. The possibility that these complexes form after solubilization was eliminated because added VAMP was unable to associate with syntaxin in solubilized control nerves and because similar amounts of complex were obtained after sodium dodecyl sulfate or CHAPS solubilization. Hence, syntaxin is already associated with SNAP 25 and VAMP during axonal transport, before reaching nerve endings.  相似文献   

15.
Abstract: Torpedo electric organ synaptosomes possess a typical vacuolar H+-ATPase (V-ATPase), inhibited by concanamycin A and insensitive to vanadate, made of the association of a catalytic soluble sector V1 to a membrane domain V0. In the electric nerves, the 57-kDa subunit B of the V1 sector was transported to the nerve endings by the slow axonal flow and did not accumulate upstream from an axonal block. In contrast, a 500% accumulation of the 15-kDa subunit c of the V0 membrane domain was observed, demonstrating that this subunit is conveyed by the fast axonal anterograde transport. After velocity sedimentation of solubilized nerve proteins, the 57- and 15-kDa subunits were recovered in different complexes corresponding, respectively, to the V1 and V0 domains. No fully assembled V-ATPase was detected. It is concluded that V1 and V0 domains of V-ATPase are transported separately in axons, at different rates, and that they only associate once arrived in nerve endings to form the active V-ATPase.  相似文献   

16.
植物液泡膜H -ATPase在建立跨液泡膜质子梯度、促进液泡Na 区域化、提高植物耐盐性方面发挥着重要作用.本实验从盐生植物盐地碱蓬(Suaeda salsa L.)cDNA文库分离到碱蓬叶片液泡膜H -ATPase B亚基cDNA克隆.测序表明该基因长达1 974 bp,开放阅读框有1 470 bp编码489个氨基酸,含有一个保守的ATP结合位点,其蛋白分子量约为54.29 kD.Northem及Western印迹表明盐地碱蓬液泡膜H -ATPase B亚基表达明显受NaCl胁迫诱导,并且在NaCl胁迫下,B亚基在转录及翻译水平上与液泡膜H -ATPase c亚基存在协同作用.盐胁迫下,盐地碱蓬液泡H -ATPase B亚基与c亚基的协同表达增加了液泡H -ATPase的数量,从而提高了液泡H -ATPase活性,为碱蓬叶片液泡Na 区域化提供了动力,最终提高了碱蓬植株的耐盐性.  相似文献   

17.
Vacuole-rich fractions were isolated from Acetabularia acetabulum by Ficoll step gradient centrifugation. The tonoplast-rich vesicles showed ATP-dependent and pyrophosphate-dependent H(+)-transport activities. ATP-dependent H(+)-transport and ATPase activity were both inhibited by the addition of a specific inhibitor of vacuolar ATPase, bafilomycin B1. A 66 kDa polypeptide present in the preparation cross-reacted with the anti-IgG fractions against the alpha and beta subunits of Halobacterium halobium ATPase and with the antibody against the A subunit (68 kDa subunit) of mung bean vacuolar ATPase. A 56 kDa polypeptide present in the vacuole preparation showed cross-reactivity with the antibody against the B subunit (57 kDa) of mung bean vacuolar ATPase but not with the anti-beta subunit of H. halobium ATPase. A 73 kDa polypeptide cross-reacted with the antibody against inorganic pyrophosphatase of mung bean vacuoles. These results suggest that vacuolar membrane of A. acetabulum equipped energy transducing systems similar to those found in other plant vacuoles.  相似文献   

18.
The monoclonal antibody M6-7, which recognizes both native and denatured immunopurified M6a antigen, was used in the present immunocytochemical study to localize its corresponding antigen in young rat brain. Strong labelling was observed in the cerebellar molecular layer, which corresponds to heavily stained axon terminals originating from granule cells. The immunodeposit, as observed by electron microscopy, is present only on the cytoplasmic side of the presynaptic membrane and on the membrane of synaptic vesicles. In contrast, the Purkinje cells and their processes are unstained. Stained synapses are also found, although less frequently, in several other cerebral areas. The pattern of staining at these synapses is similar to that observed in the cerebellar molecular layer. It is hypothesized, on the basis of its restricted distribution in certain neuronal endings and its high homology with myelin proteolipids, that the M6a antigen revealed by the M6-7 antibody is probably involved in a specific biological function in these structures.  相似文献   

19.
Upon binding to a high-affinity plasma membrane (PM) protein (a member of the 14-3-3 family of regulatory proteins), the fungal phytotoxin fusicoccin (FC) activates the H+- ATPase by hindering the inhibitory interaction of the enzyme's C-terminus with its catalytic site. Protease protection experiments carried out with sealed PM vesicles of different orientation proved that the FC-binding site faces the cytoplasmic surface of the membrane. The in vivo induced activation of the H+-ATPase by FC was retained during solubilization of PM proteins. Two-dimensional gel systems combining a native separation of membrane protein complexes with a denaturing dimension as well as high-performance anion-exchange chromatography proved the existence of a labile ATPase:14-3-3 complex in plasma membranes. Stabilization of this complex could be achieved by FC treatment in vivo or in vitro . Mild proteolytic removal of the C-terminal auto-inhibitory domain of the H+ATPase liberated apparent hydrophobic 14-3-3 isoforms from the membrane in soluble form. During size exclusion chromatography of the proteolytically released proteins, co-elution of 14-3-3 dimers, protein-bound FC and the C-terminus of the H+ATPase was observed. Moreover, the data suggest that 14-3-3 dimers themselves are not able to bind FC. Based on these results, it is proposed that the 'FC receptor' is represented by a labile complex between a 14-3-3 dimer and the H+-ATPase whose formation is part of a mechanism regulating ATPase-activity under physiological conditions. In our working model, binding of FC stabilizes this labile complex, thus leading to a strong and persistent activation of the H+-ATPase in vivo . The possibility that the C-terminus of the enzyme represents the binding domain for 14-3-3 homologs is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号