首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05 ± 0.05) × 105 M–1 s–1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.  相似文献   

2.
Nitrogen dioxide is a product of peroxynitrite homolysis and peroxidase-catalyzed oxidation of nitrite. It is of great importance in protein tyrosine nitration because most nitration pathways end with the addition of *NO2 to a one-electron-oxidized tyrosine. The rate constant of this radical addition reaction is high with free tyrosine-derived radicals. However, little is known of tyrosine radicals in proteins. In this paper, we have used *NO2 generated by gamma radiolysis to study the nitration of the R2 subunit of ribonucleotide reductase, which contains a long-lived tyrosyl radical on Tyr122. Most of the nitration occurred on Tyr122, but nonradical tyrosines were also modified. In addition, peptidic bonds close to nitrated Tyr122 could be broken. Nitration at Tyr122 was not observed with a radical-free metR2 protein. The estimated rate constant of the Tyr122 radical reaction with *NO2 was of 3 x 10(4) M(-1) s(-1), thus several orders of magnitude lower than that of a radical on free tyrosine. Nitration rate of other tyrosine residues in R2 was even lower, with an estimated value of 900 M(-1) s(-1). This study shows that protein environment can significantly reduce the reactivity of a tyrosyl radical. In ribonucleotide reductase, the catalytically active radical residue is very efficiently protected against nitrogen oxide attack and subsequent nitration.  相似文献   

3.
A possible route to S-nitrosothiols in biology is the reaction between thiyl radicals and nitric oxide. D. Hofstetter et al. (Biochem. Biophys. Res. Commun.360:146-148; 2007) claimed an upper limit of (2.8+/-0.6)x10(7) M(-1)s(-1) for the rate constant between thiyl radicals derived from glutathione and nitric oxide, and it was suggested that under physiological conditions S-nitrosation via this route is negligible. In the present study, thiyl radicals were generated by pulse radiolysis, and the rate constants of their reactions with nitric oxide were determined by kinetic competition with the oxidizable dyes 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) and a phenothiazine. The rate constants for the reaction of nitric oxide with thiyl radicals derived from glutathione, cysteine, and penicillamine were all in the range (2-3) x10(9) M(-1)s(-1), two orders of magnitude higher than the previously reported estimate in the case of glutathione. Absorbance changes on reaction of thiyl radicals with nitric oxide were consistent with such high reactivity and showed the formation of S-nitrosothiols, which was also confirmed in the case of glutathione by HPLC/MS. These rate constants imply that formation of S-nitrosothiols in biological systems from the combination of thiyl radicals with nitric oxide is much more likely than claimed by Hofstetter et al.  相似文献   

4.
One-electron oxidation of (6R)-5,6,7,8-tetrahydrobiopterin (H(4)B) by the azide radical generates the radical cation (H(4)B(*)(+)) which rapidly deprotonates at physiological pH to give the neutral trihydrobiopterin radical (H(3)B(*)); pK(a) (H(4)B(*)(+) <==> H(3)B(*) + H(+)) = (5.2 +/- 0.1). In the absence of ascorbate both the H(4)B(*)(+) and H(3)B(*) radicals undergo disproportionation to form quinonoid dihydrobiopterin (qH(2)B) and the parent H(4)B with rate constants k(H(4)B(*)(+) + H(4)B(*)(+)) = 6.5 x 10(3) M(-1) s(-1) and k(H(3)B(*) + H(3)B(*)) = 9.3 x 10(4) M(-1) s(-1), respectively. The H(3)B(*) radical is scavenged by ascorbate (AscH(-)) with an estimated rate constant of k(H(3)B(*) + AscH(-)) similar 1.7 x 10(5) M(-1) s(-1). At physiological pH the pterin rapidly scavenges a range of biological oxidants often associated with cellular oxidative stress and nitric oxide synthase (NOS) dysfunction including hydroxyl ((*)OH), nitrogen dioxide (NO(2)(*)), glutathione thiyl (GS(*)), and carbonate (CO(3)(*-)) radicals. Without exception these radicals react appreciably faster with H(4)B than with AscH(-) with k(*OH + H(4)B) = 8.8 x 10(9) M(-1) s(-1), k(NO(2)(*) + H(4)B) = 9.4 x 10(8) M(-1) s(-1), k(CO(3)(*-) + H(4)B) = 4.6 x 10(9) M(-1) s(-1), and k(GS(*) + H(4)B) = 1.1 x 10(9) M(-1) s(-1), respectively. The glutathione disulfide radical anion (GSSG(*-)) rapidly reduces the pterin to the tetrahydrobiopterin radical anion (H(4)B(*-)) with a rate constant of k(GSSG(*-) + H(4)B) similar 4.5 x 10(8) M(-1) s(-1). The results are discussed in the context of the general antioxidant properties of the pterin and the redox role played by H(4)B in NOS catalysis.  相似文献   

5.
Generation of superoxide radicals (0.01-0.1 microm s(-1)) by radiolysis of aqueous solutions containing S-nitrosoglutathione (45-160 microm, pH 3.8-7.3) resulted in loss of this solute at rates varying with solute concentration, radical generation rate, and pH. The results were quantitatively consistent with the loss being attributed to competition between reaction of superoxide with S-nitrosoglutathione (rate constant 300 +/- 100 m(-1) s(-1)) and the pH-dependent disproportionation of superoxide/hydroperoxyl. This rate constant is much lower than previous estimates and seven orders of magnitude lower than the rate constants between superoxide and superoxide dismutase or superoxide and nitric oxide. This indicates that interaction between superoxide and S-nitrosoglutathione is unlikely to be biologically important, contrary to previous suggestions that reaction could serve to prevent the rapid reaction between superoxide and nitric oxide. Reductive homolysis of S-nitrosoglutathione by the carbon dioxide radical anion, a model for biological reductants such as disulfide radical anions, occurred with a rate constant of 7.4 x 10(8) m(-1) s(-1) and produced nitric oxide stoichiometrically. Thiyl radicals were not produced, indicating the alternative homolysis route to generate nitroxyl did not occur.  相似文献   

6.
The iron chelating agent desferrioxamine inhibits peroxynitrite-mediated oxidations and attenuates nitric oxide and oxygen radical-dependent oxidative damage both in vitro and in vivo. The mechanism of protection is independent of iron chelation and has remained elusive over the past decade. Herein, stopped-flow studies revealed that desferrioxamine does not react directly with peroxynitrite. However, addition of peroxynitrite to desferrioxamine in both the absence and the presence of physiological concentrations of CO2 and under excess nitrite led to the formation of a one-electron oxidation product, the desferrioxamine nitroxide radical, consistent with desferrioxamine reacting with the peroxynitrite-derived species carbonate (CO3*-) and nitrogen dioxide (*NO2) radicals. Desferrioxamine inhibited peroxynitrite-dependent free radical-mediated processes, including tyrosine dimerization and nitration, oxyhemoglobin oxidation in the presence of CO2, and peroxynitrite plus carbonate-dependent chemiluminescence. The direct two-electron oxidation of glutathione by peroxynitrite was unaffected by desferrioxamine. The reactions of desferrioxamine with CO3*- and *NO2 were unambiguously confirmed by pulse radiolysis studies, which yielded second-order rate constants of 1.7 x 10(9) and 7.6 x 10(6) M(-1) s(-1), respectively. Desferrioxamine also reacts with tyrosyl radicals with k = 6.3 x 10(6) M(-1) s(-1). However, radical/radical combination reactions between tyrosyl radicals or of tyrosyl radical with *NO2 outcompete the reaction with desferrioxamine and computer-assisted simulations indicate that the inhibition of tyrosine oxidation can be fully explained by scavenging of the peroxynitrite-derived radicals. The results shown herein provide an alternative mechanism to account for some of the biochemical and pharmacological actions of desferrioxamine via reactions with CO3*- and *NO2 radicals.  相似文献   

7.
Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (Me(2)SO, mannitol), and hydrogen peroxide (catalase). Assuming simple competition kinetics between peroxynitrite scavengers and the enzyme, a second-order rate constant of 3.4 x 10(4) M(-1) s(-1) at 25 degrees C and pH 7.4 was estimated. The peroxynitrite-induced loss of enzyme activity was accompanied by a concentration-dependent oxidation of protein sulfhydryl groups. Peroxynitrite-modified tryptophan hydroxylase was resistant to reduction by arsenite, borohydride, and dithiothreitol, suggesting that sulfhydryls were oxidized beyond sulfenic acid. Peroxynitrite also caused the nitration of tyrosyl residues in tryptophan hydroxylase, with a maximal modification of 3.8 tyrosines/monomer. Sodium bicarbonate protected tryptophan hydroxylase from peroxynitrite-induced inactivation and lessened the extent of sulfhydryl oxidation while causing a 2-fold increase in tyrosine nitration. Tetranitromethane, which oxidizes sulfhydryls at pH 6 or 8, but which nitrates tyrosyl residues at pH 8 only, inhibited tryptophan hydroxylase equally at either pH. Acetylation of tyrosyl residues with N-acetylimidazole did not alter tryptophan hydroxylase activity. These data suggest that peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Modification of tyrosyl residues by peroxynitrite plays a relatively minor role in the inhibition of tryptophan hydroxylase catalytic activity.  相似文献   

8.
A putative glutathione peroxidase gene (Swiss-Prot accession number Z 68200) of Plasmodium falciparum, the causative agent of tropical malaria, was expressed in Escherichia coli and purified to electrophoretic homogeneity. Like phospholipid hydroperoxide glutathione peroxidase of mammals, it proved to be monomeric. It was active with H(2)O(2) and organic hydroperoxides but, unlike phospholipid hydroperoxide glutathione peroxidase, not with phosphatidylcholine hydroperoxide. With glutathione peroxidases it shares the ping-pong mechanism with infinite V(max) and K(m) when analyzed with GSH as substrate. As a homologue with selenocysteine replaced by cysteine, its reactions with hydroperoxides and GSH are 3 orders of magnitude slower than those of the selenoperoxidases. Unexpectedly, the plasmodial enzyme proved to react faster with thioredoxins than with GSH and most efficiently with thioredoxin of P. falciparum (Swiss-Prot accession number 202664). It is therefore reclassified as thioredoxin peroxidase. With plasmodial thioredoxin, the enzyme also displays ping-pong kinetics, yet with a limiting K(m) of 10 microm and a k(1)' of 0.55 s(-)1. The apparent k(1)' for oxidation with cumene, t-butyl, and hydrogen peroxides are 2.0 x 10(4) m(-1) s(-1), 3.3 x 10(3) m(-1) s(-1), and 2.5 x 10(3) m (-1) s(-1), respectively. k(2)' for reduction by autologous thioredoxin is 5.4 x 10(4) m(-1) s(-1) (21.2 m(-1) s(-1) for GSH). The newly discovered enzymatic function of the plasmodial gene product suggests a reconsideration of its presumed role in parasitic antioxidant defense.  相似文献   

9.
Eosinophil peroxidase, the major granule protein in eosinophils, is the least studied human peroxidase. Here, we have performed spectral and kinetic measurements to study the nature of eosinophil peroxidase intermediates, compounds I and II, and their reduction by the endogenous one-electron donors ascorbate and tyrosine using the sequential-mixing stopped-flow technique. We demonstrate that the peroxidase cycle of eosinophil peroxidase involves a ferryl/porphyrin radical compound I and a ferryl compound II. In the absence of electron donors, compound I is shown to be transformed to a species with a compound II-like spectrum. In the presence of ascorbate or tyrosine compound I is reduced to compound II with a second-order rate constant of (1.0+/-0.2)x10(6) M(-1) s(-1) and (3.5+/-0.2)x10(5) M(-1) s(-1), respectively (pH 7.0, 15 degrees C). Compound II is then reduced by ascorbate and tyrosine to native enzyme with a second-order rate constant of (6.7+/-0.06)x10(3) M(-1) s(-1) and (2.7+/-0.06)x10(4) M(-1) s(-1), respectively. This study revealed that eosinophil peroxidase compounds I and II are able to react with tyrosine and ascorbate via one-electron oxidations and therefore generate monodehydroascorbate and tyrosyl radicals. The relatively fast rates of the compound I reduction demonstrate that these reactions may take place in vivo and are physiologically relevant.  相似文献   

10.
The reaction of the trioxidocarbonate(*1-) radical (CO (3) (*-) , "carbonate radical anion") with cytochrome c was studied by pulse radiolysis at alkaline pH and room temperature. With iron(III) cytochrome c, CO (3) (*-) reacts with the protein moiety with rate constants of (5.1 +/- 0.6) x 10(7) M(-1) s(-1) (pH 8.4, I approximately 0.27 M) and (1.0 +/- 0.2) x 10(8) M(-1) s(-1) (pH 10, I = 0.5 M). The absorption spectrum of the haem moiety was not changed, thus, amino acid radicals produced on the protein do not reduce the haem. The pH-dependent difference in rate constants may be attributed to differences in ionization states of amino acids and to the change in the conformation of the protein. With iron(II) cytochrome c, CO (3) (*-) oxidizes the haem quantitatively, presumably via electrostatic guidance of the radical to the solvent-accessible haem edge, with a different pH dependence: at pH 8.4, the rate constant is (1.1 +/- 0.1) x 10(9) M(-1) s(-1) and, at pH 10, (7.6 +/- 0.6) x 10(8) M(-1) s(-1). We propose that CO (3) (*-) oxidizes the iron center directly, and that the lower rate observed at pH 10 is due to the different charge distribution of iron(II) cytochrome c.  相似文献   

11.
Insertion of selenocysteine (Sec) into protein scaffolds provides an opportunity for designing enzymes with improved and unusual catalytic properties. The use of a common thioredoxin fold with a high affinity for glutathione in glutaredoxin (Grx) and glutathione peroxidase (GPx) suggests a possibility of engineering Grx into GPx and vice versa. Here, we engineered a Grx domain of mouse thioredoxin/glutathione reductase (TGR) into a selenium-containing enzyme by substituting the active site cysteine (Cys) with selenocysteine (Sec) in a Cys auxotrophic system. The resulting selenoenzyme displayed an unusually high GPx catalytic activity rivaling that of several native GPxs. The engineered seleno-Grx was characterized by mass spectrometry and kinetic analyses. It showed a typical ping-pong kinetic mechanism, and its catalytic properties were similar to those of naturally occurring GPxs. For example, its second rate constant (k(cat)/K(mH2O2)) was as high as 1.55x10(7) M(-1) min(-1). It appears that glutathione-dependent Grx, GPx and glutathione transferase (GST) evolved from a common thioredoxin-like ancestor to accommodate related glutathione-dependent functions and can be interconverted by targeted Sec insertion.  相似文献   

12.
A method for determining relative tyrosyl radical scavenging activity of antioxidants which requires only a standard fluorometer and commercially available materials is presented. Ultraviolet irradiation of aqueous tyrosine solutions containing superoxide dismutase and catalase produces fluorescent dityrosine residues via dimerization of photogenerated tyrosyl radicals. Added antioxidants suppress the buildup of fluorescence by scavenging the tyrosyl radicals. A correlation exists between the ability of a substance to suppress dityrosine formation and the substance's one-electron oxidation potential. This method demonstrates that ovothiol A scavenges tyrosyl radicals much more efficiently than glutathione or cysteine, resembling instead the known biological radical scavengers uric acid and ascorbic acid and the alpha-tocopherol analog trolox.  相似文献   

13.
The aim of this study was to investigate the oxidation of two common fluorescent probes, dichlorodihydrofluorescein (DCFH2) and dihydrorhodamine (DHR), and their oxidized forms, dichlorofluorescein and rhodamine, by the radical products of peroxynitrite chemistry, *OH, NO2*, and CO3*-. At pH 8.0-8.2, rate constants for the interaction of carbonate radical with probes were estimated to be 2.6 x 10(8) x M(-1) s(-1) for DCFH2 and 6.7 x 10(8) M(-1) s(-1) for DHR. Nitrogen dioxide interacted more slowly than carbonate radical with these probes: the rate constant for the interaction between NO2* and DCFH2 was estimated as 1.3 x 10(7) M(-1) s(-1). Oxidation of DHR by nitrogen dioxide led to the production of rhodamine, but the kinetics of these reactions were complex. Hydroxyl radical interacted with both probes with rate constants close to the diffusion-controlled limit. We also found that oxidized forms of these fluorescent probes reacted rapidly with carbonate, nitrogen dioxide, and hydroxyl radicals. These data suggest that probe oxidation may often be in competition with reaction of the radicals with cellular antioxidants.  相似文献   

14.
Hwang JT  Greenberg MM  Fuchs T  Gates KS 《Biochemistry》1999,38(43):14248-14255
The compound 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine; also known as SR4233, WIN 59075, and tirazone) is a clinically promising anticancer agent that selectively kills the oxygen-poor (hypoxic) cells found in tumors. When activated by one-electron enzymatic reduction, tirapazamine induces radical-mediated oxidative DNA strand cleavage. Using the ability to generate a single deoxyribose radical at a defined site in an oligonucleotide, we recently provided direct evidence that, in addition to initiating the formation of DNA radicals, tirapazamine can react with these radicals and convert them into base-labile lesions [Daniels et al. (1998) Chem. Res. Toxicol. 11, 1254-1257]. The rate constant for trapping of a C1'-radical in single-stranded DNA by tirapazamine was shown to be approximately 2 x 10(8) M(-1) s(-1), demonstrating that tirapazamine can substitute for molecular oxygen in radical-mediated DNA strand damage reactions. Because reactions of tirapazamine with DNA radicals may play an important role in its ability to damage DNA, we have further characterized the ability of the drug and its metabolites to convert a C1'-DNA radical into a base-labile lesion. We find that tirapazamine reacts with a C1'-radical in double-stranded DNA with a rate constant of 4.6 x 10(6) M(-1) s(-1). The mono-N-oxide (3) stemming from bioreductive metabolism of tirapazamine converts the C1'-radical to an alkaline-labile lesion more effectively than the parent drug. Compound 3 traps a C1'-radical in single-stranded DNA with a rate constant of 4.6 x 10(8) M(-1) s(-1) and in double-stranded DNA with a rate constant of 1.4 x 10(7) M(-)(1) s(-)(1). We have also examined the rate and mechanism of reactions between the C1'-radical and representatives from two known classes of "oxygen mimetic" agents: the nitroxyl radical 2,2,6, 6-tetramethylpiperidin-N-oxyl (4, TEMPO) and the nitroimidazole misonidazole (5). TEMPO traps the C1'-radical in single-stranded DNA (7.2 x 10(7) M(-1) s(-1)) approximately 3 times less effectively than tirapazamine, but 2 times as fast in double-stranded DNA (9.1 x 10(6) M(-1) s(-1)). Misonidazole traps the radical in single- (6. 9 x 10(8) M(-1) s(-1)) and double-stranded DNA (2.9 x 10(7) M(-1) s(-1)) with rate constants that are roughly comparable to those measured for the mono-N-oxide metabolite of tirapazamine. Finally, information regarding the chemical mechanism by which these compounds oxidize a monomeric C1'-nucleoside radical has been provided by product analysis and isotopic labeling studies.  相似文献   

15.
Free radical damage of DNA is a well-known process affecting biological tissue under conditions of oxidative stress. Though carbohydrate-derived radicals are generally "repaired" by hydrogen transfer from thiols, the reverse possibility, namely hydrogen abstraction by thiyl radicals from carbohydrates, exists. The biological relevance of this process has been discussed controversially, especially because of the lack of rate constants. Therefore, we have measured rate constants for the hydrogen transfer reaction between thiyl radicals from cysteine and selected carbohydrates, 2-deoxy-D-ribose (dRib), 2-deoxy-D-glucose (dGls), alpha-D-glucose (Gls), and inositol (Ino). Rate constants are on the order of 10(4) M(-1)s(-1), with the highest average value for dRib, (2.7 +/- 1.0) x 10(4) M(-1)s(-1), and the lowest average value for dGls, (1.6 +/- 0.2) x 10(4) M(-1)s(-1), based on two ways of kinetic analysis, standard competition kinetics and stochastic simulation of the experimental results, respectively. In general, thiyl radicals attack preferentially the C(1)-H bond of the carbohydrates, to an extent of ca. 72% in dRib and 90% in dGls. Kinetic measurements were possible through a specifically designed competition system measuring the reaction of thiyl radicals with either the C-H bonds of the carbohydrates or the C(alpha)-H bond of cysteine under conditions where the extent of other competitive reactions of the thiyl radicals were minimized.  相似文献   

16.
Hydroxyl radicals abstract hydrogen atoms from glycerol-2-phosphate with a specific rate constant of (7.0 +/- 1.5) x 10(8) M-1s-1 forming the beta-phospho radical as the major product. At physiological pH this radical undergoes a beta-phosphate elimination with a rate constant less than or equal to 1 x 10(3) s-1. The beta-phospho radical reacts with Cu(I)-phenanthroline to produce an unstable transient with a metal-carbon sigma-bond which has an absorbance similar to that of the cuprous phenanthroline complex in the visible region. This intermediate decomposes via a beta-elimination of phosphate with a rate constant of (1.0 +/- 1.5) x 10(4) s-1, which was independent of the acidity in the pH range 4-9.  相似文献   

17.
Myeloperoxidase (MPO) is the most abundant protein in neutrophils and plays a central role in microbial killing and inflammatory tissue damage. Because most of the non-steroidal anti-inflammatory drugs and other drugs contain a thiol group, it is necessary to understand how these substrates are oxidized by MPO. We have performed transient kinetic measurements to study the oxidation of 14 aliphatic and aromatic mono- and dithiols by the MPO intermediates, Compound I (k3) and Compound II (k4), using sequential mixing stopped-flow techniques. The one-electron reduction of Compound I by aromatic thiols (e.g. methimidazole, 2-mercaptopurine and 6-mercaptopurine) varied by less than a factor of seven (between 1.39 +/- 0.12 x 10(5) M(-1) s(-1) and 9.16 +/- 1.63 x 10(5) M(-1) s(-1)), whereas reduction by aliphatic thiols was demonstrated to depend on their overall net charge and hydrophobic character and not on the percentage of thiol deprotonation or redox potential. Cysteamine, cysteine methyl ester, cysteine ethyl ester and alpha-lipoic acid showed k3 values comparable to aromatic thiols, whereas a free carboxy group (e.g. cysteine, N-acetylcysteine, glutathione) diminished k3 dramatically. The one-electron reduction of Compound II was far more constrained by the nature of the substrate. Reduction by methimidazole, 2-mercaptopurine and 6-mercaptopurine showed second-order rate constants (k4) of 1.33 +/- 0.08 x 10(5) M(-1) s(-1), 5.25 +/- 0.07 x 10(5) M(-1) s(-1) and 3.03 +/- 0.07 x 10(3) M(-1) s(-1). Even at high concentrations cysteine, penicillamine and glutathione could not reduce Compound II, whereas cysteamine (4.27 +/- 0.05 x 10(3) M(-1) s(-1)), cysteine methyl ester (8.14 +/- 0.08 x 10(3) M(-1) s(-1)), cysteine ethyl ester (3.76 +/- 0.17 x 10(3) M(-1) s(-1)) and alpha-lipoic acid (4.78 +/- 0.07 x 10(4) M(-1) s(-1)) were demonstrated to reduce Compound II and thus could be expected to be oxidized by MPO without co-substrates.  相似文献   

18.
Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 10(7) M(-1) s(-1) at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 10(7) M(-1) s(-1) at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pK(a) of phenolic hydroxyl dissociation in tyrosine is ≈ 10.3, this infers a much lower rate constant, about 3 × 10(5) M(-1) s(-1), for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

19.
The glutathione thiyl radical does not react with nitrogen monoxide   总被引:1,自引:0,他引:1  
Laser flash photolysis experiments shows that the rate constant for the reaction of the glutathione thiyl radical with nitrogen monoxide to give S-nitrosoglutathione is lower than 2.8+/-0.6 x 10(7)M(-1)s(-1). The conversion of the thiyl radical to its carbon-centred form at 10(3)s(-1) exceeds the formation of S-nitrosoglutathione when physiological concentrations of nitrogen monoxide are taken into account.  相似文献   

20.
Absolute rate constants for the addition of oxygen to thiyl radicals, i.e. RS. + O2----RSOO., have been determined by applying a new competition method based on RS. formation via one-electron reduction of the corresponding disulphides, and the competition between RS. reacting with O2 and an electron donor such as ascorbate. Bimolecular rate constants have been obtained for the thiyl radicals derived from cysteine (6.1 X 10(7) mol-1 dm3 s-1), penicillamine (2.5 X 10(7) mol-1 dm3 s-1), homocysteine (8.0 X 10(7) mol-1 dm3 s-1), cysteamine (2.8 X 10(7) mol-1 dm3 s-1), 3-thiopropionic acid (2.2 X 10(8) mol-1 dm3 s-1) and glutathione (3.0 X 10(7) mol-1 dm3 s-1), respectively. The values obtained for the O2 addition to the thiyl radicals from glutathione and cysteine are considerable lower (by about two orders of magnitude) than those previously published. This indicates that the RS. + O2 reaction may be of complex nature and is generally a process which is not solely controlled by the diffusion of the reactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号