首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Otx2 gene, containing a highly conserved paired-type homeobox, plays a pivotal role in the development of the rostral head throughout vertebrates. Precise regulation of the temporal and spatial expression of Otx2 is likely to be crucial for proper head specification. However, regulatory mechanisms of Otx2 expression remain largely unknown. In this study, the Otx2 genome of the puffer fish Fugu rubripes, which has been proposed as a model vertebrate owing to its highly compact genome, was cloned. Consistently, Fugu Otx2 possesses introns threefold smaller in size than those of the mouse Otx2 gene. Otx2 mRNA was transcribed after MBT, and expressed in the rostral head region throughout the segmentation and pharyngula periods of wild-type Fugu embryos. To elucidate regulatory mechanisms of Otx2 expression, the expression of Otx2-lacZ reporter genes nearly covering the Fugu Otx2 locus, from -30.5 to +38.5 kb, was analyzed, by generating transgenic mice. Subsequently, seven independent cis-regulators were identified over an expanse of 60 kb; these regulators are involved in the mediation of spatiotemporally distinct subdomains of Otx2 expression. Additionally, these expression domains appear to coincide with local signaling centers and developing sense organs. Interestingly, most domains do not overlap with one another, which implies that cis-regulators for redundant expression may be abolished exclusively in the pufferfish so as to reduce its genome size. Moreover, these cis-regions were also able to direct expression in zebrafish embryos equivalent to that observed in transgenic mice. Further comparative sequence analysis of mouse and pufferfish intergenic regions revealed eight highly conserved elements within these cis-regulators. Therefore, we propose that, in vertebrate evolution, the Otx2 promoter acquires multiple, spatiotemporally specific cis-regulators in order to precisely control highly coordinated processes in head development.  相似文献   

2.

Background

Guanine protein-coupled receptors (GPCRs) constitute a eukaryotic transmembrane protein family and function as “molecular switches” in the second messenger cascades and are found in all organisms between yeast and humans. They form the single, biggest drug-target family due to their versatility of action and their role in several physiological functions, being active players in detecting the presence of light, a variety of smells and tastes, amino acids, nucleotides, lipids, chemicals etc. in the environment of the cell. Comparative genomic studies on model organisms provide information on target receptors in humans and their function. The Japanese teleost Fugu has been identified as one of the smallest vertebrate genomes and a compact model to study the human genome, owing to the great similarity in its gene repertoire with that of human and other vertebrates. Thus the characterization of the GPCRs of Fugu would provide insights to the evolution of the vertebrate genome.

Results

We classified the GPCRs in the Fugu genome and our analysis of its 316 membrane-bound receptors, available on the public databases as well as from literature, detected 298 GPCRs that were grouped into five main families according to the GRAFS classification system (namely, Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin). We also identified 18 other GPCRs that could not be grouped under the GRAFS family and hence were classified as ‘Other 7TM’ receptors. On comparison of the GPCR information from the Fugu genome with those in the human and chicken genomes, we detected 96.83% (306/316) and 96.51% (305/316) orthology in GPCRs among the Fugu-human genomes and Fugu-chicken genomes, respectively.

Conclusions

This study reveals the position of pisces in vertebrate evolution from the GPCR perspective. Fugu can act as a reference model for the human genome for other protein families as well, going by the high orthology observed for GPCRs between Fugu and human. The evolutionary comparison of GPCR sequences between key vertebrate classes of mammals, birds and fish will help in identifying key functional residues and motifs so as to fill in the blanks in the evolution of GPCRs in vertebrates.
  相似文献   

3.
Lim Y  Lee SM  Kim M  Lee JY  Moon EP  Lee BJ  Kim J 《Gene》2002,286(2):291-297
Analysis of the complete genomic structure of the human ribosomal protein S3 (rpS3) gene revealed the presence of a functional U15b snoRNA gene in its intron. Human ribosomal protein S3 (rpS3) gene of 6115 bp long has been identified to contain six introns and seven exons in this study. The first and fifth introns of human S3 gene contain functional U15 snoRNA genes. Although Xenopus and Fugu counterparts also have six introns and seven exons, S3 gene of Fugu contains two functional U15 snoRNAs in the fourth and sixth introns and two pseudo genes for U15 snoRNAs in the first and fifth introns. In Xenopus S1 gene encoding ribosomal protein S3, however, three of its six introns contain U15 snoRNA gene sequence. Sequence comparison of the U15 genes from Xenopus, Fugu and human revealed that the regions involved in binding to 28S rRNA and the consensus sequence (C, D and D' boxes) for snoRNAs are highly conserved among those genes from these three species. Human U15a and U15b RNAs which are derived from the first and the fifth introns, respectively, have been identified to be functional by microinjection of human U15a and U15b snoRNAs into Xenopus oocyte. Northern blot and primer extension analyses confirm that human U15b snoRNA is expressed in vivo.  相似文献   

4.
The highly compact nature of the pufferfish (Fugu rubripes) genome renders it a useful tool not only for annotating coding regions within vertebrate genomes, but also for the identification of sequences important to gene regulation. Indeed, owing to this compaction it will be feasible in many instances to initiate analyses using entire intergenic regions when mapping gene promoters; a strategy that is very rarely feasible with the expanded genomes of other species. Stemming from our interest in studying promoters expressed in chondrocytes, we selected for study the intergenic region upstream of Fugu 3'-phosphoadenosine 5'-phosphosulfate synthase 2, fPapss2, a gene required for the normal development of cartilage extracellular matrix. Functional characterization of the entire fPapss2 5' intergenic region was carried out by monitoring expression of the enhanced green fluorescent protein (EGFP) gene reporter in the developing cartilage of transgenic Xenopus laevis. By evaluating a series of 5' intergenic region deletions we defined a minimal fPapss2 sequence of approximately 300 bp that was essential for EGFP expression in tadpole cartilage. This functional analysis of an entire Fugu intergenic region, combined with the efficiency of Xenopus transgenesis, serves as a model for the rapid characterization of evolutionarily-conserved regulatory regions of other pufferfish genes.  相似文献   

5.
Mutations in the survival of motor neuron (SMN) gene are the major cause of spinal muscular atrophy (SMA). The SMN gene encodes a 38-kDa protein that localises in the cytoplasm and in nuclear bodies termed Gemini of coiled bodies (gems). When visualised by immunofluorescence microscopy, gems often appeared either in close proximity to, or entirely overlapping with coiled (Cajal) bodies (CBs) implying a possible functional relationship between these nuclear domains. With the aim of identifying subnuclear compartments corresponding to gems, we have investigated the intranuclear localisation of SMN and of its interacting protein Gemin2 by immunoelectron microscopy in cultured cells and in liver cells of hibernating dormouse. These antigens are highly enriched in round-shaped electron-dense fibro-granular clusters (EFGCs), which also display a biochemical composition similar to gems visualised by immunofluorescence microscopy. Our data reveal a novel SMN/Gemin2 containing nuclear domain and support the idea that it represents the structural counterpart of gems seen in the light microscope.  相似文献   

6.
Gilligan P  Brenner S  Venkatesh B 《Gene》2002,294(1-2):35-44
The compact genome of the pufferfish, Fugu rubripes, has been proposed as a 'reference' genome to aid in annotating and analysing the human genome. We have annotated and compared 85 kb of Fugu sequence containing 17 genes with its homologous loci in the human draft genome and identified three 'novel' human genes that were missed or incompletely predicted by the previous gene prediction methods. Two of the novel genes contain zinc finger domains and are designated ZNF366 and ZNF367. They map to human chromosomes 5q13.2 and 9q22.32, respectively. The third novel gene, designated C9orf21, maps to chromosome 9q22.32. This gene is unique to vertebrates, and the protein encoded by it does not contain any known domains. We could not find human homologs for two Fugu genes, a novel chemokine gene and a kinase gene. These genes are either specific to teleosts or lost in the human lineage. The Fugu-human comparison identified several conserved non-coding sequences in the promoter and intronic regions. These sequences, conserved during 450 million years of vertebrate evolution, are likely to be involved in gene regulation. The 85 kb Fugu locus is dispersed over four human loci, occupying about 1.5 Mb. Contiguity is conserved in the human genome between six out of 16 Fugu gene pairs. These contiguous chromosomal segments should share a common evolutionary history dating back to the common ancestor of mammals and teleosts. We propose contiguity as strong evidence to identify orthologous genes in distant organisms. This study confirms the utility of the Fugu as a supplementary tool to uncover and confirm novel genes and putative gene regulatory regions in the human genome.  相似文献   

7.
Abstract The puffer fish Takifugu rubripes (Fugu), with its compact genome, is an ideal model organism for comparative genomics. Sonic hedgehog (Shh) is a key protein in the patterning of differentiating cells during embryonic development. We have sequenced the Fugu Shh gene and compared it with the mammalian and zebrafish orthologs, identifying a number of novel conserved, non-coding sequences upstream of exon one and within the two introns. Additional conserved sequences serve to delineate activator regions and enhancers previously characterized through functional analysis. Control elements can thus be rapidly and effectively predicted by comparative methodology in its own right as well as complementing other, functional methods. This work demonstrates the value of using Fugu in comparative genomics, which has allowed identification of new putative regulatory elements, as well as corroborating enhancers identified by the more traditional deletion mapping method.  相似文献   

8.
Spinal muscular atrophy (SMA) is primarily a neurodegenerative disease caused by the homozygous deletion of the survival motor neuron 1 (SMN1) gene, thereby reducing SMN protein expression. Mesenchymal stem cells (MSCs) have been implicated in the treatment of SMA. In the present study, we overexpressed exogenous SMN1 at the ribosomal DNA (rDNA) locus of induced pluripotent stem cells (iPSCs) generated from a SMA patient using an rDNA-targeting vector. The gene-targeted patient iPSCs differentiated into MSCs (SMN1-MSCs). A 2.1-fold higher expression level of SMN protein was detected in SMN1-MSCs than that detected in MSCs derived from patient iPSCs, and the results of the immunofluorescence analysis showed no difference in the quantity of SMN nuclear structures (gems) between SMN1-MSCs and MSCs derived from normal human iPSCs (h-MSCs). These findings provide a novel strategy for obtaining gene-targeted MSCs for potential clinical applications in autologous cell-based therapy.  相似文献   

9.
We describe here the construction of plasmid pEGFP-C3/SMN, bearing the human SMN gene coupled to the green fluorescent protein (GFP) sequence. The mutation of the SMN gene is responsible for spinal muscular atrophy (SMA), a frequent human infantile genetic disease. We introduced the SMN cDNA into the multiple cloning site of pEGFP-C3. This plasmid bears the neomycin-resistance sequence and the enhanced green fluorescent protein (EGFP). It results in the expression of a fusion protein bearing SMN coupled to a carboxy-terminal GFP tag, used for fluorescence localization studies. Transfection of primary human myoblasts with pEGFP-C3 or pEGFP-C3/SMN revealed that EGFP is intracellularly localized within the cytosol as well as in the nucleus, while the fusion protein EGFP-SMN localized within the nucleus in prominent dot-like structures termed "gems." These data demonstrate that human primary muscle cells can be efficiently transfected and may have important implications for the development of therapeutic strategies in SMA.  相似文献   

10.

Background

The pufferfish Fugu rubripes (Fugu) with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified.

Results

We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6) in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci.

Conclusion

This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.
  相似文献   

11.
12.
13.
To study the evolution of the solute carrier family 11 (slc11; formerly Nramp) protein, we isolated and characterized two paralogs from the pufferfish Takifugu rubripes (Fugu). These teleost genes, designated Fugu slc11a-a and Fugu slc11a-b, comprise open reading frames of 1743 nucleotides (581 amino acids) and 1662 nt (554 aa), respectively. The proteins are 81% similar, and both exhibit signature features of the slc11 family of proteins including 12 transmembrane domains, a conserved transport motif and a glycosylated loop. Both Fugu paralogs are more Slc11a2-like based on sequence homology and phylogenetic studies. Analysis of gene environment placed both in the proximity of multiple loci syntenic to human chromosome 12q13, that is, within a SLC11A2 gene environment. However, Fugu slc11a-a also gave one match with chromosome 2q35, where human SLC11A1 resides. Functional diversification was suggested by differences in tissue distribution and subcellular localization. Fugu slc11a-a exhibits a restricted expression profile and a complex subcellular localization, including LAMP1 positive late endosomes/lysosomes in transiently transfected mouse macrophages. Fugu slc11a-b is expressed ubiquitously and localizes solely to late endosomes/lysosomes. This comparative analysis extends our understanding of the evolution and function of this important family of divalent cation transporters. [Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AJ496547/8/9 and AJ496550.]  相似文献   

14.
We report the isolation and characterization of a cDNA coding for Fugu rubripes prion protein (PrP)-like of 180 amino acids which includes the PrP-conserved hydrophobic region homologous to that of Xenopus PrP. In addition to the hydrophobic region, Fugu PrP-like has several features common to PrPs, such as a signal sequence, a basic nature (pI 9.7) and a single intron in the 5' untranslated region. A possible glycosyl phosphatidylinositol (GPI) anchor site also exists in PrP-like. In expression analysis, PrP-like mRNA was detected in retina, skin, and brain, all of which express PrP mRNA in mammals. In a genome fragment clone (T002589, 31945 bp) sequenced by the Fugu Genomics Project, PrP-like located between KIAA0168 and SLC231A homologues. In human chromosome 20p13, PrP, Doppel, KIAA0168, and SLC231A align in this order. The close gene arrangement between the Fugu and human genomes suggests that Fugu PrP-like is a real orthologue of human PrP. However, Fugu PrP-like does not possess tandem repeats or a region with two glycosylation sites and a disulphide bridge. We do not declare that the cloned Fugu PrP-like represents fish PrP due to structural inconsistency, but believe that it will offer new insights into the evolution of PrPs from fish to tetrapods.  相似文献   

15.
16.
Human and mouse LSP1 genes code for highly conserved phosphoproteins   总被引:4,自引:0,他引:4  
With use of the mouse LSP1 cDNA we isolated a human homologue of the mouse LSP1 gene from a human CTL cDNA library. The predicted protein sequence of human LSP1 is compared with the predicted mouse LSP1 protein sequence and regions of homology are identified in order to predict structural features of the LSP1 protein that might be important for its function. Both the human and mouse LSP1 proteins consist of two domains, an N-terminal acidic domain and a C-terminal basic domain. The C-terminal domains of the mouse and human LSP1 proteins are highly conserved and include several conserved, putative serine/threonine phosphorylation sites. Immunoprecipitation of LSP1 protein from 32P-orthophosphate-loaded cells show that both the mouse and human LSP1 proteins are phosphoproteins. The sequences of the putative Ca2(+)-binding sites present in the N-terminal domain of the mouse LSP1 protein are not conserved in the human LSP1 protein; however, a different Ca2(+)-binding site may exist in the human protein, indicating a functional conservation rather than a strict sequence conservation of the two proteins. The expression of the human LSP1 gene follows the same pattern as the expression of the mouse LSP1 gene. Southern analysis of human genomic DNA shows multiple LSP1-related fragments of varying intensity in contrast to the simple pattern found after similar analysis of mouse genomic DNA. By using different parts of the human LSP1 cDNA as a probe, we show that most of these multiple bands contain sequences homologous to the conserved C-terminal region of the LSP1 cDNA. This suggests that there are several LSP1-related genes present in the human genome.  相似文献   

17.
Wong E  Yu WP  Yap WH  Venkatesh B  Soong TW 《Gene》2006,366(1):117-127
Extensive search for the orthologs of 10 human voltage-gated calcium channel (VGCC) alpha(1)-subunit genes in the Fugu genome sequence revealed 21 alpha(1)-subunit genes in the compact genome of Fugu. Subtype classification of the identified Fugu alpha(1) orthologs based on phylogenetic analysis, genomic organization and sequence comparison of the most divergent II/III loop and the C-terminal regions of the alpha(1)-subunits indicated extra copies of alpha(1S)-, alpha(1D)-, alpha(1F)-, alpha(1A)-, alpha(1E)-, alpha(1H)- and alpha(1G)-subunit genes. Phylogenetic analysis reveals that this is likely due to fish lineage specific alpha(1)-subunit subtype duplication. Sequence comparison shows that many of the structural features characteristic of VGCC and specific channel subtypes are also present in the Fugu alpha(1)-subunits. All the Fugu alpha(1)-subunits showed similar expression profile to that of the mammalian alpha(1)-subunits except for Fugu alpha(1S), alpha(1A), alpha(1B) and alpha(1H) which have a more widespread tissue distribution. These results indicate that Fugu, a lower vertebrate, has more extensive channel heterogeneity compared to human.  相似文献   

18.
19.
Ohtsuka M  Kikuchi N  Ozato K  Inoko H  Kimura M 《Genomics》2004,83(6):1063-1071
Medaka is one of the prominent model animals, which also include other fishes such as Fugu and zebrafish. Its genome is relatively compact but has not been well characterized. Here we have sequenced a 229-kb region of medaka, containing the Double anal fin (Da) locus, and compared its structure to those in Fugu, human, and mouse. This region, representing a gene-poor region, contains no major rearrangements and can be readily compared among different species. Comparison of G+C contents and repeats suggested that medaka and Fugu are highly related as expected and that medaka is more similar to mammals than Fugu is. Sequence comparisons of developmental genes zic1 and zic4, identified within this region, revealed that zic1, but not zic4, is highly conserved among vertebrates. The 5' coding region of zic4 is, however, extremely homologous among fishes with little synonymous substitutions, implying its distinct function in fish.  相似文献   

20.
The regulation of the mouse tyrosinase gene expression is controlled by a highly conserved element at -100 bp, the M-box, and an enhancer at -12 kb. In most vertebrates, the length of intergenic sequences makes it difficult to analyze the whole gene and the complete regulatory region. We took advantage of the compact Fugu genome to identify regulatory regions involved in pigment cell-specific expression. We isolated the Fugu tyrosinase gene, and identified putative cis-acting regulatory elements within the promoter. We then asked whether the Fugu promoter sequence functions in mouse pigment cells. We showed that E11.5 transgenic embryos bearing 6 kb or 3 kb of Fugu tyrosinase 5' sequence fused to the reporter gene lacZ revealed melanoblast and RPE-specific expression. This is the first evidence that the tyrosinase promoter is active at midgestation in melanoblasts, long before the onset of pigmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号