首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

2.
Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.  相似文献   

3.
Hepatic differentiation of mouse ES cells into BE cells in vitro   总被引:1,自引:0,他引:1  
  相似文献   

4.
Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) have multi-lineage differentiation potential, thus highlighting the feasibility of using UCB-MSCs as a valuable source of stem-cells for cell-based therapy. However, there are no well-defined markers for assessment of the multi-potency of UCB-MSCs. Thus, we focused on the identification of suitable markers by examining cell surface protein expressions of UCB-MSCs as their multi-lineage differentiations progressed. The expression of CD105, one of the cell surface proteins, was significantly decreased in differentiated osteoblasts, chondrocytes, adipocytes, and respiratory epithelium, and the portion of CD105-positive cells from 99.4 ± 0.1% to 3.5 ± 1.4%, 3.5 ± 2.3%, 16.7 ± 3.6%, and 2.1 ± 1.5%, respectively. As to such indicators as alkaline phosphatase (ALP), glycosaminoglycan (GAG), oil Red O, and surfactant protein C (SPC), they showed increases, confirming differentiation of UCB-MSCs into osteoblasts, chondrocytes, adipocytes, and respiratory epithelium. This is the first study to demonstrate a negative correlation between expression of CD105 over the time course of multi-lineage differentiation and the degree of differentiation of UCB-MSCs. We propose that CD105 is a useful novel marker to characterize differentiation status of isolated human UCB-MSCs, which will be useful to facilitate the application of such cells in stem-cell therapy.  相似文献   

5.
Human mesenchymal stem cells (hMSCs) have been paid a great deal of attention because of their unprecedented therapeutic merits endowed by powerful ex vivo expansion and multilineage differentiation potential. Umbilical cord blood (UCB) is a convenient but not fully proven source for hMSCs, and hence, greater experience is required to establish UCB as a reliable source of hMSCs. To this end, we attempted to isolate hMSC-like adherent cells from human UCB. The isolated cells were highly proliferative and exhibited an immunophenotype of CD13+ CD14- CD29+ CD31- CD34- CD44+ CD45- CD49e+ CD54+ CD90+ CD106- ASMA+ SH2+ SH3+ HLA-ABC+ HLA-DR-. More importantly, these cells, under appropriate conditions, could differentiate into a variety of mesenchymal lineage cells such as osteoblasts, chondrocytes, adipocytes, and skeletal myoblasts. This mesengenic potential assures that the UCB-derived cells are multipotent hMSCs and further implicates that UCB can be a legitimate source of hMSCs.  相似文献   

6.
7.
Hematopoetic stem cells (HSC) are the progenitors for the lympho-hematopoietic system, with long lifespan and high proliferation potential. Transplantation of HSC from bone marrow or peripheral blood represents a standard therapy in severe hematological conditions. A possible alternative source of HSC is the umbilical cord blood, prepared by various separation procedures followed by expansion in cultures supplemented with hematopoietic growth factors. In order to check the effects of placental conditioned medium (PCM) from placental cells culture upon viability of HSC, we added plasma, PCM, dimetil sulfoxyde or hemin in HSC cultures. Flow cytometry or direct scoring of solid cultures using CD45+, CD34+, CD71+ and CD14+ fluorescent-labeled monoclonal antibodies evaluated the effects upon cell proliferation and colony forming ability of HSC cultures, versus controls. PCM produced the highest proliferation, followed by plasma, DMSO and hemin. PCM improved the survival time and maintained a higher proportion of immature cells. PCM stimulates the differentiation towards myeloid lineage progenitor cells (>90% being CD45+), increasing the percentage of CD14+, granulocites /monocytes precursors. It is highly suggestive that PCM contains growth factors or cytokines, which regulate the development of HSC. Characterization of these factors is in progress.  相似文献   

8.
The performance of a small-scale automated cryopreservation and storage system (Mini-BioArchive system) used in the banking of umbilical cord blood (UCB) units was evaluated. After thawing the units, the viability and recovery of cells, as well as the recovery rate of hematopoietic progenitor cells (HPCs) such as CD34+ cells, colony-forming unit-granulocyte-macrophage (CFU-GM), and total CFU were analyzed. Twenty UCB units cryopreserved using the automated system and stored for a median of 34 days were analyzed. Mean CD34+ cell viabilities before freezing were 99.8 ± 0.5% and after thawing were 99.8 ± 0.4% in the large bag compartments and 99.7 ± 0.5% in the small compartments. The mean recovery values for total nucleated cells, CD34+ cells, CFU-GM, and total CFU were 94.8 ± 16.0%, 99.3 ± 18.6%, 103.9 ± 20.6%, and 94.3 ± 12.5%, respectively in the large compartments, and 95.8 ± 25.9%, 106.8 ± 23.9%, 101.3 ± 23.3%, and 93.8 ± 19.2%, respectively in the small compartments. A small-scale automated cryopreservation and storage system did not impair the clonogenic capacity of UCB HPCs. This cryopreservation system could provide cellular products adequate for UCB banking and HPC transplantation.  相似文献   

9.
Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSPCs)would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity.In recent years,numerous attempts have been made to expand human UCB HSPCs in vitro.In this study,we report that caffeic acid phenethyl ester(CAPE),a small molecule from honeybee extract,can promote in vitro expansion of HSPCs.Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells.Importantly,culture of CD34+HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units.Burst-forming unit-erythroid was the mostly affected colony type,which increased more than 3.7-fold in 1μg mL 1CAPE treatment group when compared to the controls.CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α.Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion.  相似文献   

10.
The ability of hematopoietic tissue-derived adult stem cells to transdifferentiate into neural progenitor cells offers an interesting alternative to central nervous system (CNS)- or embryonic-derived stem cells as a viable source for cellular therapies applied to brain regeneration. Umbilical cord blood (CB) due to its primitive nature and it unproblematic collection appears as a promising candidate for multipotent stem cell harvest. We developed a negative immunomagnetic selection method that depletes CB from hematopoietic lineage marker-expressing cells, hence isolating a discrete lineage negative (LinNeg) stem cell population (0.1% of CB mononucleated cell [MCN] population). In liquid culture supplemented with thrombopoietin, flt-3 ligand, and c-kit ligand (TPOFLK), CB LinNeg stem cells could expand primitive nonadherent hematopoietic progenitors (up to 47-fold) and simultaneously produce slow-dividing adherent cells with neuroglial progenitor cell morphology over 8 weeks. Laser scanning confocal microscopy analysis identified these adherent cells to express glial fibrillary acidic protein (GFAP). Gene expression analysis showed upregulation of primitive neuroglial progenitor cell markers including, GFAP, nestin, musashi-1, and necdin. ELISA quantification of liquid culture supernatant revealed the in vitro release of transforming growth factor beta-1 (TGFbeta1), glial cell line-derived neurotrophic factor (GDNF) suggesting their contribution to CB LinNeg stem cell transdifferentiation into neuroglial progenitors. Our study supports that a single CB specimen can be pre-expanded in TPOFLK to produce both primitive hematopoietic and neuropoietic progenitors, hence widening CB clinical potential for cellular therapies.  相似文献   

11.
12.
Mesenchymal stem cells from cryopreserved human umbilical cord blood   总被引:32,自引:0,他引:32  
Umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, but the presence of mesenchymal stem cells (MSCs) in UCB has been disputed and it remains to be validated. In this study, we examined the ability of cryopreserved UCB harvests to produce cells with characteristics of MSCs. We were able to obtain homogeneous plastic adherent cells from the mononuclear cell fractions of cryopreserved UCB using our culture conditions. These adherent cell populations exhibited fibroblast-like morphology and typical mesenchymal-like immunophenotypes (CD73+, CD105+, and CD166+, etc.). These cells presented the self-renewal capacity and the mesenchymal cell-lineage potential to form bone, fat, and cartilage. Moreover, they expressed mRNAs of multi-lineage genes including SDF-1, NeuroD, and VEGF-R1, suggesting that the obtained cells had the multi-differentiation capacity as bone marrow-derived MSCs. These results indicate that cryopreserved human UCB fractions can be used as an alternative source of MSCs for experimental and therapeutic applications.  相似文献   

13.
Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.  相似文献   

14.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

15.
Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric alpha-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.  相似文献   

16.
The successful use of tissue-engineered transplants is hampered by the need for vascularization. Recent advances have made possible the using of stem cells as cell sources for therapeutic angiogenesis, including the vascularization of engineered tissue grafts. The goal of this study was to examine the endothelial potential of human umbilical cord-derived stem (UCDS) cells. UCDS cells were initially characterized and differentiated in an endothelial differentiation medium containing VEGF and bFGF. Differentiation into endothelial cells was determined by acetylated low-density lipoprotein incorporation and expression of endothelial-specific proteins, such as PECAM and CD34. In vivo, the transplanted UCDS cells were sprouting from local injection and differentiated into endothelial cells in a hindlimb ischemia mouse model. These findings indicate the presence of a cell population within the human umbilical cord that exhibits characteristics of endothelial progenitor cells. Therefore, human umbilical cord might represent a source of stem cells useful for therapeutic angiogenesis and re-endothelialization of engineered tissue grafts.  相似文献   

17.
Since umbilical cord blood (UCB), contains a limited hematopoietic stem/progenitor cells (HSC) number, successful expansion protocols are needed to overcome the hurdles associated with inadequate numbers of HSC collected for transplantation. UCB cultures were performed using a human stromal‐based serum‐free culture system to evaluate the effect of different initial CD34+ cell enrichments (Low: 24 ± 1.8%, Medium: 46 ± 2.6%, and High: 91 ± 1.5%) on the culture dynamics and outcome of HSC expansion. By combining PKH tracking dye with CD34+ and CD34+CD90+ expression, we have identified early activation of CD34 expression on CD34? cells in Low and Medium conditions, prior to cell division (35 ± 4.7% and 55 ± 4.1% CD34+ cells at day 1, respectively), affecting proliferation/cell cycle status and ultimately determining CD34+/CD34+CD90+ cell yield (High: 14 ± 1.0/3.5 ± 1.4‐fold; Medium:22 ± 2.0/3.4 ± 1,0‐fold; Low:31 ± 3.0/4.4 ± 1.5‐fold) after a 7‐day expansion. Considering the potential benefits of using expanded UCB HSC in transplantation, here we quantified in single UCB units, the impact of using one/two immunomagnetic sorting cycles (corresponding to Medium and High initial progenitor content), and the average CD34+ cell recovery for each strategy, on overall CD34+ cell expansion. The higher cell recovery upon one sorting cycle lead to higher CD34+ cell numbers after 7 days of expansion (30 ± 2.0 vs. 13 ± 1.0 × 106 cells). In particular, a high (>90%) initial progenitor content was not mandatory to successfully expand HSC, since cell populations with moderate levels of enrichment readily increased CD34 expression ex‐vivo, generating higher stem/progenitor cell yields. Overall, our findings stress the importance of establishing a balance between the cell proliferative potential and cell recovery upon purification, towards the efficient and cost‐effective expansion of HSC for cellular therapy. J. Cell. Biochem. 112: 1822–1831, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.

Background aims

Umbilical cord blood (UCB) provides an alternative source for hematopoietic stem/progenitor cells (HSPCs) in the treatment of hematological malignancies. However, clinical usage is limited due to the low quantity of HSPCs in each unit of cord blood and defects in bone marrow homing. Hyperbaric oxygen (HBO) is among the more recently explored methods used to improve UCB homing and engraftment. HBO works by lowering the host erythropoietin before UCB infusion to facilitate UCB HSPC homing, because such UCB cells are not directly exposed to HBO. In this study, we examined how direct treatment of UCB-CD34+ cells with HBO influences their differentiation, proliferation and in vitro transmigration.

Methods

Using a locally designed HBO chamber, freshly enriched UCB-CD34+ cells were exposed to 100% oxygen at 2.5 atmospheres absolute pressure for 2?h before evaluation of proliferative capacity, migration toward a stromal cell–derived factor 1 gradient and lineage differentiation.

Results

Our results showed that HBO treatment diminishes proliferation and in vitro transmigration of UCB-CD34+ cells. Treatment was also shown to limit the ultimate differentiation of these cells toward an erythrocyte lineage. As a potential mechanism for these findings, we also investigated HBO effects on the relative concentration of cytoplasmic and nucleic reactive oxygen species (ROS) and on erythropoietin receptor (Epo-R) and CXCR4 expression. HBO-treated cells showed a relative increase in nucleic ROS but no detectable differences in the level of Epo-R nor CXCR4 expression were established compared with non-treated cells.

Discussion

In summary, HBO amplifies the formation of ROS in DNA of UCB-CD34+ cells, potentially explaining their reduced proliferation, migration and erythrocytic differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号