首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants which have acclimatized to limiting supplies of nitrogen (steady-state nutrition), leaf expansion (numbers and sizes of leaves and cells) is under tight control. Over a wide range of nitrogen supplies, the control of leaf growth is associated with a narrow band of photosynthetic rate per leaf area (measured at the growth climate) and, at limiting supplies, a carbon uptake which is in excess of immediate carbon usage in structural growth.For every increment of nitrogen absorbed, root extension is greater at limited nitrate supply, but Vmax values (per root dry weight) for nitrate absorption are typically less. However, the capacity of the whole root system for nitrate uptake at limited supply is sufficient to allow for maximum growth, should nitrate supply be increased.It is concluded that a better understanding at the cellular level of the mechanisms which result in a greater inhibition of the expansion of single leaves than of root extension would contribute to an understanding of differences in carbon sink strength among plant organs. This may be a crucial step towards a more physiologically-based appreciation of plant dry matter distribution among organs in plants experiencing different nitrogen supplies.  相似文献   

2.
Low temperature (6 C) growth was examined in two cultivarsof Vicia faba L. supplied with 4 and 20 mol m–3 N as nitrateor urea. Both cultivars showed similar growth responses to increasedapplied-N concentration regardless of N-form. Total leaf areaincreased, as did root, stem and leaf dry weight, total carboncontent and total nitrogen content. In contrast to findingsat higher growth temperatures, 20 mol m–3 urea-N gavesubstantially greater growth (all parameters measured) than20 mol m–3 nitrate-N. The increased carbon content per plant associated with increasedapplied nitrate or urea concentration, or with urea in comparisonto nitrate, was due to a greater leaf area per plant for CO2uptake and not an increased CO2, uptake per unit area, carbon,chlorophyll or dry weight, all of which either remained constantor decreased. Nitrate reductase activity was substantial inplants given nitrate but negligible in plants given urea. Neitherfree nitrate nor free urea contributed greatly to nitrogen levelsin plant tissues. It is concluded that there is no evidence for a restrictionin nitrate reduction at 6 C, and it is likely that urea givesgreater growth than nitrate because of greater rates of uptake. Vicia faba, broad bean, low temperature growth, carbon assimilation, nitrogen assimilation  相似文献   

3.
Abstract Changes in the uptake and allocation of carbon and nitrogen, after a step-decrease in nutrient availability, were investigated in small birch (Betula pendula Roth). By demonstrating stable nutrition, before and after the decrease in nutrient supply, it was possible to eliminate the effects of plant size and age. Immediately following the step-decrease in nutrient availability, net nitrogen uptake to leaves and the relative rate of increase in shoot area tended to zero. Although photosynthetic rate per shoot area decreased, carbon uptake remained in excess of that used in structural growth and respiration. More of the excess carbon was accumulated as starch in leaves than in roots. After a lag phase, the relative rates of increase in plant dry matter, starch amount, net nitrogen uptake to leaves and shoot area development equalled that of the reduced rate of nutrient supply. It is concluded that the reduction in plant relative growth rate was much more attributable to the reduced allocation of photosynthate to leaf area growth than to the reduction in photosynthesis per shoot area.  相似文献   

4.
Azide-resistant mutants ofAzorhizobium caulinodans strains Sb3, S78, SrR13 and SrS8 were isolated and screened for nitrate reductase activity. Selected nitrate reductase negative mutants were inoculated onSesbania bispinosa andS. rostrata under sterile conditions in chillum jars to study their symbiotic behavior. Azide-resistant mutants exhibited either similar or higher symbiotic effectiveness than the parent strain after 30 d of plant growth. Nodule mass, nitrogenase activity and uptake hydrogenase activity of the mutants varied depending on the host as well as on the plant growth stage. In comparison to wild-type parent strains, four azide-resistant mutants, Sb3Az18, S78Az21, SrR13Az17 and SrS8Az6 showed significant increase in nodulation and nitrogen fixation as well as shoot dry mass of the inoculated plants.  相似文献   

5.
Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant’s efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N2 fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N2 fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.  相似文献   

6.
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.  相似文献   

7.
The effects of sewage sludges were investigated on the symbiotic interactions between the model plant Medicago truncatula and the arbuscular mycorrhizal fungus Glomus mosseae or the rhizobial bacteria Sinorhizobium meliloti. By comparison to a control sludge showing positive effects on plant growth and root symbioses, sludges enriched with polycylic aromatic hydrocarbons or heavy metals were deleterious. Symbiosis-related proteins were detected and identified by two-dimensional electrophoresis and matrix-assisted laser desorption ionization mass spectrometry, and image analysis was used to study the effects of sewage sludges on M. truncatula symbiotic proteome.  相似文献   

8.
韩一多  向梅春  刘杏忠 《菌物学报》2020,39(12):2268-2276
虎杖象甲培植共生真菌形成的共生体系是植菌昆虫菌业中的典型代表。共生真菌Penicillium herquei如何向虎杖象甲Euops chinensis提供营养尚未明确。本研究发现共生真菌P. herquei的菌丝表面存在大量瘤状凸起物及由凸起物衍生的附属丝等特化结构,该结构可能为虎杖象甲提供营养;对共生真菌的营养研究表明,共生真菌能高效利用山梨醇、蔗糖、海藻糖、葡萄糖等单糖或双糖,以及酪氨酸、甘氨酸、谷氨酰胺等昆虫非必须氨基酸,同时在高碳和最适碳源条件下有利于菌丝特化附属物的产生。研究结果不仅提供了植菌卷叶象甲菌业中共生真菌在营养方面的适应性进化证据,而且为进一步揭示共生真菌适应卷叶象甲的营养机制奠定了基础。  相似文献   

9.
10.
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.  相似文献   

11.
Although the function of the extramatrical mycelium of ectomycorrhizal fungi is considered essential for the acquisition of nitrogen by forest trees, gene regulation in this fungal compartment is poorly characterized. In this study, the expression of the nitrate transporter gene nrt2 from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum was shown to be regulated by plant host and carbon sources. In the presence of a low fructose concentration, nrt2 expression could not be detected in the free-living mycelium but was high in the extramatrical symbiotic mycelium associated to the host plant Pinus pinaster. In the absence of nitrogen or in the presence of nitrate, high sugar concentrations in the medium were able to enhance nrt2 expression. Nevertheless, in the presence of high fructose concentration, high ammonium concentration still completely repressed nrt2 expression indicating that the nitrogen repression overrides sugar stimulation. This is the first report revealing an effect of host plant and of carbon sources on the expression of a fungal nitrate transporter-encoding gene.  相似文献   

12.
The nitrogen economy of barley plants growing in a range ofirradiances from full shade (less than 0·5 W m–2)to 119 W m–2 has been examined by analysing levels oftotal, organic and nitrate nitrogen, and by determining nitratereductase activity in leaf extracts. It has been confirmed thatroot growth is reduced in low irradiances which are also associatedwith a lower level of total nitrogen in the plant, and hencewith a lower uptake of nitrate. In all parts of the plant thelevel of organic nitrogen is higher in high light intensitybut nitrate-nitrogen as a proportion of the total is greatestin low irradiances. In the first leaf accumulation of free nitrateis substantially greater in low irradiances. The data indicate a higher level of nitrate assimilation inhigh irradiances and nitrate reductase activity in leaf extractsis higher in such conditions. When the first leaf is shadednitrate reductase activity falls to undetectable levels afterabout 4 days, but in the case of the second leaf, where thisis shaded, some reductase activity is always found, althoughthis is substantially less than that in unshaded conditions. It is concluded that in vitro rates of nitrate reduction mayover-estimate nitrate assimilation determined as increase inorganic nitrogen.  相似文献   

13.
14.
Effects of soil acidity on groundnut-Bradyrhizobium symbiotic performance were studied in a potted, sandy soil in a glasshouse in Zimbabwe. The soil was limed to soil-pH levels of 5.0 and 6.5. Soil acidity negatively affected plant development, measured as leaf area and plant dry weight, while nodulation was enhanced. This acidity-enhanced nodulation was most evident when nodulation was caused by the indigenousBradyrhizobium population. Effects of soil acidity differed between groundnut cultivars andBradyrhizobium spp. strains, the former having greater importance. TwoArachis hypogaea L. Spanish-type cultivars, Falcon and Plover, performed equally well at neutral soil pH, but Falcon was more acid tolerant. Comparison of the symbiotic performance in neutral versus acid soil of twoBradyrhizobium spp. strains, MAR 411 (3G4b20) and MAR 1510 (CB 756), showed that MAR 411 performed superiorly in neutral soil, but MAR 1510 in acid soil. The indigenousBradyrhizobium population was more effective than was inoculation with strains MAR 411 or MAR 1510. Comparison of twelveBradyrhizobium spp. strains for their symbiotic performance in acid soil showed that some strains were totally ineffective under acidity stress (MAR 253, MAR 967 and MAR 1506), while others performed well.Bradyrhizobium spp. strain MAR 1576 (32 H1) ranked highest for nitrogen accumulation, plant dry weight and leaf area, with strains MAR 1555 (TAL 11) and MAR 1510 following closely. Nitrate fertilisation of groundnut plants led to soil alkalinisation, while nitrogen fixation resulted in soil acidification. Soil acidity in combination with soil sterilisation gave rise to symptoms associated with Al and Mn toxicity.  相似文献   

15.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   

16.
A simple model is proposed to describe diurnal net nitrate uptake rate patterns observed experimentally on young plants grown under constant non-limiting nutrition. It rests on two hypotheses: net uptake rate is under negative feedback control by internal plant nitrate content, and nitrogen metabolism occurs only during the light period. The model parameters were determined from the results of three independent experiments performed under non-disturbing conditions in a growth room at constant air and solution temperatures. Net hourly nitrate uptake rate was measured through a diurnal cycle and after an extended 28 h period of darkness. It increased continuously during the light period and decreased during the dark period. Under prolonged darkness, net uptake declined to an asymptotic positive uptake rate of about 10-5 mol h-1 g-1 total plant dry weight. The measured hourly nitrate uptake rate values were consistent with independent determinations of long-term nitrate and total N accumulations in the plant. Realistic simulations of experimental data are achieved with the proposed model. Furthermore, the maintenance of a positive net uptake rate, measured in non-growing plants subjected to prolonged darkness, is explained in the model by the continuous increase of plant water content. The importance of the diurnal variations of plant water content for nitrate uptake rate is emphasized and gives consistency to the homeostasis hypothesis of the model. The diurnal changes in nitrate uptake predicted by the model are strongly dependent on the assumption made for diurnal changes in nitrate assimilation. While the purely photosynthetic assumption is convenient, a more realistic metabolism sub-model is needed.  相似文献   

17.
Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H?O and CO?) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic.  相似文献   

18.
Arbuscular mycorrhiza and the rhizobia-legume symbiosis are two major root endosymbioses that facilitate plant nutrition. In Lotus japonicus, two symbiotic cation channels, CASTOR and POLLUX, are indispensable for the induction of nuclear calcium spiking, one of the earliest plant responses to symbiotic partner recognition. During recent evolution, a single amino acid substitution in DOES NOT MAKE INFECTIONS1 (DMI1), the POLLUX putative ortholog in the closely related Medicago truncatula, rendered the channel solo sufficient for symbiosis; castor, pollux, and castor pollux double mutants of L. japonicus were rescued by DMI1 alone, while both Lj-CASTOR and Lj-POLLUX were required for rescuing a dmi1 mutant of M. truncatula. Experimental replacement of the critical serine by an alanine in the selectivity filter of Lj-POLLUX conferred a symbiotic performance indistinguishable from DMI1. Electrophysiological characterization of DMI1 and Lj-CASTOR (wild-type and mutants) by planar lipid bilayer experiments combined with calcium imaging in Human Embryonic Kidney-293 cells expressing DMI1 (the wild type and mutants) suggest that the serine-to-alanine substitution conferred reduced conductance with a long open state to DMI1 and improved its efficiency in mediating calcium oscillations. We propose that this single amino acid replacement in the selectivity filter made DMI1 solo sufficient for symbiosis, thus explaining the selective advantage of this allele at the mechanistic level.  相似文献   

19.
Growth, leaf and cell morphology, and the chemical composition of the second leaf were studied in wheat (Triticum aestivumL., cv. Inna) plants grown on the medium containing nitrate, ammonium, or no nitrogen at all. Independent of the nitrogen nutrition, the second leaf of the 21-day-old plants matures and functions as a source of assimilates. Both ammonium nutrition and nitrogen deficiency decreased the fresh weight, area, and cell size in the leaf; however, the conditions of nitrogen nutrition did not affect the dry weight of the leaf. Nitrogen starvation increased and ammonium nutrition decreased the relative content of the cell walls in the dry weight. In the nitrate-fed plants, the leaf content of sucrose increased, and the contents of reduced nitrogen (Nred) and protein were lower than in the ammonium treatment. Reciprocally, the contents of reduced nitrogen and protein were highest in the ammonium treatment, the content of sucrose was lowest, with starch practically absent from the leaf. The nitrogen-starved leaf accumulated a large amount of starch, the Nredcontent was two times lower than in the ammonium-fed plants, and the protein content was similar to that in the nitrate-fed plants. Thus, leaf and cell morphology and the content of Nred, protein, and carbohydrate changes in different ways during wheat acclimation to the condition of nitrogen nutrition. By assessing the cell wall weight, the authors established that, depending on nitrogen nutrition, this cell compartment accepts a variable flow of carbon.  相似文献   

20.
The rate of photosynthesis and nitrate uptake are related to the iron concentration in the medium for the green alga Scenedesmus quadricauda (Turp.) Breb. Increased iron leads to changes in chlorophyll a concentration, carbon fixation rate per chlorophyll a and in vivo fluorescence characteristics. These parameters all indicate that the efficiency of photosynthesis is related to iron nutrition. Nitrate uptake rate is also a function of both Fe and light Iron-limited cultures had decreased nitrate uptake at low light whereas ammonium uptake was relatively constant. Iron-limited cultures fixed about twice as much carbon into protein relative to the total carbon fixed. Iron plays a crucial role in the bioenergetics of carbon and nitrogen metabolism and may be important in controlling patterns of productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号