首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Spectrofluorometric studies on the conformational changes in tropomyosin associated with depolymerization of the molecules were carried out using 1-anilino-8-naphthalene sulfonate (ANS). When ANS-probed tropomyosin was depolymerized to its monomer, the fluorescence intensity markedly increased, with a decrease in fluorescence polarization. On the other hand, the emission maxima of the ANS-tropomyosin complexes of both forms were the same. The temperature dependence of the polarization of the complexes at various KCl concentrations suggested that the segmental motion of a moiety containing the fluorophore was considerably activated by depolymerization of tropomyosin. In the polymerized and oligomeric forms, a thermal transition in the polarization was observed with a transition temperature of 30 degrees C. Titration curves of tropomyosin with ANS showed simple saturation kinetics with both monomer and polymer, and the apparent dissociation constants were estimated to be 9.93 X 10(-5) M (monomer) and 7.43 X 10(-5) M (polymer). On the other hand, the number of the ANS-binding sites increased from 0.5 to 2.0 per tropomyosin monomer on depolymerization of the molecules. Based on these results, the conformational state of tropomyosin in the polymerized form is discussed.  相似文献   

2.
1-Anilino-8-naphthalene sulfonate (ANS) anion is conventionally considered to bind to preexisting hydrophobic (nonpolar) surfaces of proteins, primarily through its nonpolar anilino-naphthalene group. Such binding is followed by an increase in ANS fluorescence intensity, similar to that occurring when ANS is dissolved in organic solvents. It is generally assumed that neither the negative sulfonate charge on the ANS, nor charges on the protein, participate significantly in ANS-protein interaction. However, titration calorimetry has demonstrated that most ANS binding to a number of proteins occurs through electrostatic forces, in which ion pairs are formed between ANS sulfonate groups and cationic groups on the proteins (D. Matulis and R. E. Lovrien, Biophys. J., 1998, Vol. 74, pp. 1-8). Here we show by viscometry and diffusion coefficient measurements that bovine serum albumin and gamma-globulin, starting from their acid-expanded, most hydrated conformations, undergo extensive molecular compaction upon ANS binding. As the cationic protein binds negatively charged ANS anion it also takes up positively charged protons from water to compensate the effect of the negative charge, and leaves the free hydroxide anions in solution thus shifting pH upward (the Scatchard-Black effect). These results indicate that ANS is not always a definitive reporter of protein molecular conformation that existed before ANS binding. Instead, ANS reports on a conformationally tightened state produced by the interplay of ionic and hydrophobic characters of both protein and ligand.  相似文献   

3.
Rat brain tubulin binds 1 mole of 1-anilino-8-naphthalene sulfonate (ANS) per dimer (110,000 daltons) with an association constant of 3.2 × 105m?1. The quantum yield of ANS fluorescence is increased 120-fold over that in water to φ = 0.48 and there is a hypsochromic shift of 56 nm to an emission maximum of 460 nm. There is energy transfer from tryptophan to bound ANS. Vinblastine and Ca2+ enhance ANS fluorescence in tubulin by 35%–40%; this can be ascribed to an increased quantum yield, rather than changes in the affinity constant or number of binding sites. The ANS binding site shows minimal decay at 37 °C when colchicine binding has decreased to 50%. It is concluded that the colchicine- and ANS-binding sites occupy different regions of the tubulin molecule.  相似文献   

4.
Although freeze-induced perturbations of the protein native fold are common, the underlying mechanism is poorly understood owing to the difficulty of monitoring their structure in ice. In this report we propose that binding of the fluorescence probe 1-anilino-8-naphthalene sulfonate (ANS) to proteins in ice can provide a useful monitor of ice-induced strains on the native fold. Experiments conducted with copper-free azurin from Pseudomonas aeruginosa, as a model protein system, demonstrate that in frozen solutions the fluorescence of ANS is enhanced several fold and becomes blue shifted relative free ANS. From the enhancement factor it is estimated that, at -13 degrees C, on average at least 1.6 ANS molecules become immobilized within hydrophobic sites of apo-azurin, sites that are destroyed when the structure is largely unfolded by guanidinium hydrochloride. The extent of ANS binding is influenced by temperature of ice as well as by conditions that affect the stability of the globular structure. Lowering the temperature from -4 degrees C to -18 degrees C leads to an apparent increase in the number of binding sites, an indication that low temperature and /or a reduced amount of liquid water augment the strain on the protein tertiary structure. It is significant that ANS binding is practically abolished when the native fold is stabilized upon formation of the Cd(2+) complex or on addition of glycerol to the solution but is further enhanced in the presence of NaSCN, a known destabilizing agent. The results of the present study suggest that the ANS binding method may find practical utility in testing the effectiveness of various additives employed in protein formulations as well as to devise safer freeze-drying protocols of pharmaceutical proteins.  相似文献   

5.
The three-dimensional structure of human class pi glutathione S-transferase from placenta (hGSTP1-1), a homodimeric enzyme, has been solved by Patterson search methods and refined at 2.8 A resolution to a final crystallographic R-factor of 19.6% (8.0 to 2.8 A resolution). Subunit folding topology, subunit overall structure and subunit association closely resembles the structure of porcine class pi glutathione S-transferase. The binding site of a competitive inhibitor, S-hexylglutathione, is analyzed and the locations of the binding regions for glutathione (G-site) and electrophilic substrates (H-site) are determined. The specific interactions between protein and the inhibitor's glutathione peptide are the same as those observed between glutathione sulfonate and the porcine isozyme. The H-site is located adjacent to the G-site, with the hexyl moiety lying above a segment (residues 8 to 10) connecting strand beta 1 and helix alpha A where it is in hydrophobic contact with Tyr7, Phe8, Val10, Val35 and Tyr106. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

6.
Using fluorescence parameters of tryptophanyl and bound ANS, the acid-induced structural transitions of defatted monomeric human serum albumin were measured as pH-dependences from 6 to 2.5 in the wide range of temperature (10 to 45 degrees C) and ionic strength (from 0.001 to 0.2 M NaCl or 0.067 M Na2SO4). Temperature rise and decrease in ionic strength value result in the splitting of the N-F-transition onto two stages, N-F1 and F1-F2. The N-F1-transition is accompanied by the blue shift of tryptophanyl and ANS fluorescence spectra and increase in the ANS emission yield. The F1-F2-stage is manifested in an additional blue spectral shift and a sharp drop of the ANS emission yield, which is shown to be due to the lowering of albumin affinity for the dye. In the acidic-extension stage (F2-E), the spectra undergo a red shift which means that the nanosecond dipole relaxation of protein groups and bound water becomes faster. In the F2 from, the albumin affinity for ANS is significantly lowered; the association constant of the primary binding site is lower by an order of quantity and two secondary sites are practically disappeared. The complex effect of temperature, ionic strength and pH changes on the properties of ANS-binding sites is considered as a model of possible control influences of these factors upon the albumin transport of amphiphilic anions in organism.  相似文献   

7.
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) toNaja naja atra phospholipase A2 (PLA2) as well as the enhancement of ANS fluorescence of the PLA2-ANS complex decreased with increasing pH in a pH range from 3 to 9. These pH-dependent curves can be well interpreted as the perturbation of an ionizable group with pK value of 5.8, which was assigned as His-47 in the active site of PLA2. The ionizable group with pK 5.8 was no longer observed after methylation of His-47, supporting the idea that thepH dependence of ANS binding arose from an electrostatic interaction between His-47 and the bound ANS. Removal of the N-terminal octapeptide of PLA2 caused a precipitous drop in the capability of PLA2 for binding with ANS and enhancing ANS fluorescence, reflecting that the integrity of the N-terminal region was essential for maintaining the hydrophobic character of the ANS-binding site. However, the nonpolarity of the ANS-binding site in the N-terminus-removed derivative was still partially retained at lowpH, but was completely lost at highpH. Evidently, the N-terminal region plays a more crucial role in ANS binding at highpH than at lowpH. These results indicate that hydrophobic interaction as well as electrostatic interaction are involved in the binding of ANS to PLA2, and that the relative contributions of both interactions in ANS fluorescence enhancement may be different under differentpH.  相似文献   

8.
The influence of oleate ion, a free fatty acid anion, on the binding characteristics of 1-anilino-8-naphthalene sulfonate (ANS) with the cytoplasmic proteins (Y and Z) from rat liver has been examined using fluorescence spectroscopy. ANS binds strongly with both ligandin (Y) and Z protein at a single binding site with dissociation constants of 0.6 and 1.4 micron respectively. Increasing concentrations of oleate ion decreased the ANS binding with either protein by competing with the ANS binding site. Relative binding constant of oleate ion for the hepatic ligandin or Z protein was about 2 micron as determined from the competitive inhibition of ANS binding. These results suggest that variations in the hepatic cytoplasmic free fatty acid concentration may be important in regulating the capacity of Y and Z proteins to transport other organic anions.  相似文献   

9.
Nieslanik BS  Ibarra C  Atkins WM 《Biochemistry》2001,40(12):3536-3543
Binding of a hydrophobic glutathione product conjugate to rGST A1-1 proceeds via a two-step mechanism, including rapid ligand docking, followed by a slow isomerization to the final [GST.ligand] complex, which involves the localization of the flexible C-terminal helix. These kinetically resolved steps have been observed previously by stopped-flow fluorescence with the wild-type rGST A1-1, which contains a native Trp-21 approximately 20 A from the ligand binding site at the intrasubunit domain-domain interface. To confirm this binding mechanism, as well as elucidate the effects of truncation of the C-terminus, we have further characterized the binding and dissociation of the glutathione-ethacrynic acid product conjugate (GS-EA) to wild-type, F222W:W21F, and Delta209-222 rGST A1-1 and wild-type hGST A1-1. Although modest kinetic differences were observed between the hGST A1-1 and rGST A1-1, stopped-flow binding studies with GS-EA verified that the two-step mechanism of ligand binding is not unique to the GST A1-1 isoform from rat. An F222W:W21F rGST A1-1 double mutant provides a direct fluorescence probe of changes in the environment of the C-terminal residue. The observation of two relaxation times during ligand binding and dissociation to F222W:W21F suggests that the C-terminus has an intermediate conformation following ligand docking, which is distinct from its conformation in the apoenzyme or localized helical state. For the wild-type, Delta209-222, and F222W:W21F proteins, variable-temperature stopped-flow experiments were performed and activation parameters calculated for the individual steps of the binding reaction. Activation parameters for the binding reaction coordinate illustrate that the C-terminus provides a significant entropic contribution to ligand binding, which is completely realized within the initial docking step of the binding mechanism. In contrast, the slow isomerization step is enthalpically driven. The partitioning of entropic and enthalpic components of binding energy was confirmed by isothermal titration calorimetry with wild-type and Delta209-222 rGST A1-1.  相似文献   

10.
Helix 9, the major structural element in the C-terminal region of class Alpha glutathione transferases, forms part of the active site of these enzymes where its dynamic properties modulate both catalytic and ligandin functions. A conserved aspartic acid N-capping motif for helix 9 was identified by sequence alignments of the C-terminal regions of class Alpha glutathione S-transferases (GSTs) and an analysis by the helix-coil algorithm AGADIR. The contribution of the N-capping motif to the stability and dynamics of the region was investigated by replacing the N-cap residue Asp-209 with a glycine in human glutathione S-transferase A1-1 (hGST A1-1) and in a peptide corresponding to its C-terminal region. Far-UV circular dichroism and AGADIR analyses indicate that, in the absence of tertiary interactions, the wild-type peptide displays a low intrinsic tendency to form a helix and that this tendency is reduced significantly by the Asp-to-Gly mutation. Disruption of the N-capping motif of helix 9 in hGST A1-1 alters the conformational dynamics of the C-terminal region and, consequently, the features of the H-site to which hydrophobic substrates (e.g. 1-chloro-2,4-dinitrobenzene (CDNB)) and nonsubstrates (e.g. 8-anilino-1-naphthalene sulfonate (ANS)) bind. Isothermal calorimetric and fluorescence data for complex formation between ANS and protein suggest that the D209G-induced perturbation in the C-terminal region prevents normal ligand-induced localization of the region at the active site, resulting in a less hydrophobic and more solvent-exposed H-site. Therefore, the catalytic efficiency of the enzyme with CDNB is diminished due to a lowered affinity for the electrophilic substrate and a lower stabilization of the transition state.  相似文献   

11.
The interaction between 1-anilino-8-naphthalenesulfonate (ANS) and yeast phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) and the use of ANS as a probe for studying the structure and function of phosphoglycerate kinase has been investigated. The interaction has been studied by kinetic methods, equilibrium dialysis, and fluorometric titrations. ANS inhibits the activity of the enzyme. More than one inhibitor site exists. ANS is competitive with MgATP and noncompetitive with 3-phosphoglycerate at the first detected inhibitor binding site. The Ki value is 1-2 mM. Several ANS molecules bind to the enzyme. By fluorometric titrations the first detected site has a dissociation constant that is in the same range as Ki or bigger. When ANS interacts with phosphoglycerate kinase its fluorescence is increased and a blue shift occurs. ANS appears to bind to a strongly hydrophobic site. The fluorescence is sensitive to the addition of substrates. ADP, ATP, or combinations of Mg2+ and nucleotide decreases the fluorescence as does free Mg2+. 3-Phosphoglycerate, on the other hand, increases the fluorescence giving evidence for conformational changes upon 3-phosphoglycerate binding.  相似文献   

12.
A C-terminal helix (α9) adjacent to the active site on each subunit is a structural feature unique to the alpha isoform of glutathione transferases which contributes to the catalytic and ligandin functions of the enzyme. The ionisation state of Tyr-9, a residue critical to catalysis, influences α9 dynamics, although the mechanism is poorly understood. In this study, isothermal titration calorimetry was used to probe the binding energetics of G-site (glutathione and glutathione sulfonate) and H-site (ethacrynic acid) ligands to wild-type and a Y9F mutant of human glutathione transferase A1-1. Although previous studies have reported a favourable entropic component to the binding of conjugates occupying both sites, our data reveal that ligand binding is enthalpically driven when either the G- or H-site is occupied independently. Also, heat capacity changes demonstrate that α9 is fully localised by H-site but not G-site occupation. The Tyr-9 hydroxyl group contributes significantly to ligand binding energetics, although the effect differs between the two binding sites. G-site binding is made slightly enthalpically more favourable and entropically less favourable by the Y9F mutation. Binding to the H-site is more dramatically affected, with the K(d) for ethacrynic acid increasing 5 fold despite a more favourable ΔS. The heat capacity change is more negative for G-site binding in the absence of the Tyr-9 hydroxyl (ΔΔC(p)=-0.73 kJ mol(-1) K(-1)), but less negative for H-site binding to the Y9F mutant (ΔΔC(p)=0.63 kJ mol(-1) K(-1)). This suggests that the relationship between Tyr-9 and α9 is not independent of the ligand. Rather, Tyr-9 appears to function in orienting the ligand optimally for α9 closure.  相似文献   

13.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

14.
1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity.  相似文献   

15.
The weak hydrophobic acid carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) is a protonophoric uncoupler of oxidative phosphorylation in mitochondria. It dissipates the electrochemical proton gradient (ΔμH +) increasing the mitochondrial oxygen consumption. However, at concentrations higher than 1 μM it exhibits additional effects on mitochondrial energy metabolism, which were tentatively related to modifications of electrical properties of the membrane. Here we describe the effect of FCCP on the binding of 1-anilino-8-naphthalene sulfonate (ANS) to 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) unilamellar vesicles. FCCP inhibited the binding of ANS to liposomes either in the gel or in the liquid crystalline phase, by increasing the apparent dissociation constant of ANS. Smaller effect on the dissociation constant was observed at high ionic strength, suggesting that the effect of FCCP is through modification of the electrostatic properties of the membrane interface. In addition, FCCP also decreased (approximately 50 %) the quantum yield and increased the intrinsic dissociation constant of membrane-bound ANS, results that suggest that FCCP makes the environment of the ANS binding sites more polar. On those grounds we postulate that the binding of FCCP: i) increases the density of negative charges in the membrane surface; and ii) distorts the phospholipid bilayer, increasing the mobility of the polar headgroups making the ANS binding site more accessible to water.  相似文献   

16.
The design of therapeutic compounds targeting transthyretin (TTR) is challenging due to the low specificity of interaction in the hormone binding site. Such feature is highlighted by the interactions of TTR with diclofenac, a compound with high affinity for TTR, in two dissimilar modes, as evidenced by crystal structure of the complex. We report here structural analysis of the interactions of TTR with two small molecules, 1-amino-5-naphthalene sulfonate (1,5-AmNS) and 1-anilino-8-naphthalene sulfonate (1,8-ANS). Crystal structure of TTR:1,8-ANS complex reveals a peculiar interaction, through the stacking of the naphthalene ring between the side-chain of Lys15 and Leu17. The sulfonate moiety provides additional interaction with Lys15′ and a water-mediated hydrogen bond with Thr119′. The uniqueness of this mode of ligand recognition is corroborated by the crystal structure of TTR in complex with the weak analogue 1,5-AmNS, the binding of which is driven mainly by hydrophobic partition and one electrostatic interaction between the sulfonate group and the Lys15. The ligand binding motif unraveled by 1,8-ANS may open new possibilities to treat TTR amyloid diseases by the elucidation of novel candidates for a more specific pharmacophoric pattern.  相似文献   

17.
The binding interactions between dimeric glutathione transferase from Schistosoma japonicum (Sj26GST) and bromosulfophthalein (BS) or 8-anilino-1-naphthalene sulfonate (ANS) were characterised by fluorescence spectroscopy and isothermal titration calorimetry (ITC). Both ligands inhibit the enzymatic activity of Sj26GST in a non-competitive form. A stoichiometry of 1 molecule of ligand per mole of dimeric enzyme was obtained for the binding of these ligands. The affinity of BS is higher (K(d)=3.2 microM) than that for ANS (K(d)=195 microM). The thermodynamic parameters obtained by calorimetric titrations are pH-independent in the range of 5.5 to 7.5. The interaction process is enthalpically driven at all the studied temperatures. This enthalpic contribution is larger for the ANS anion than for BS. The strongly favourable enthalpic contribution for the binding of ANS to Sj26GST is compensated by a negative entropy change, due to enthalpy-entropy compensation. DeltaG degrees remains almost invariant over the temperature range studied. The free energy change for the binding of BS to Sj26GST is also favoured by entropic contributions at temperatures below 32 degrees C, thus indicating a strong hydrophobic interaction. Heat capacity change obtained for BS (DeltaC(p) degrees =(-580.3+/-54.2) cal x K(-1) mol(-1)) is twofold larger (in absolute value) than for ANS (DeltaC(p) degrees =(-294.8+/-15.8) cal x K(-1) mol(-1)). Taking together the thermodynamic parameters obtained for these inhibitors, it can be argued that the possible hydrophobic interactions in the binding of these inhibitors to L-site must be accompanied by other interactions whose contribution is enthalpic. Therefore, the non-substrate binding site (designed as ligandin) on Sj26GST may not be fully hydrophobic.  相似文献   

18.
High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence intensity and a blueshift of emission maximum from 510-520 to 460-470nm upon addition of apo-FBP indicating binding to a strongly hydrophobic environment. Neither enhancement of fluorescence nor blueshift of ANS emission maximum occurred when folate-ligated holo-FBP replaced apo-FBP. The drastic decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby block and prevent aggregation of proteins (chaperone-like effect). Hence, hydrophobic interactions seemed to participate in the concentration-dependent self-association of apo-FBP which was suppressed by high ANS concentrations in light scatter measurements.  相似文献   

19.
S S Wong  P A Frey 《Biochemistry》1978,17(17):3551-3556
Escherichia coli UDP-galactose 4-epimerase in its native form (epimerase.NAD) binds 8-anilino-1-naphthalenesulfonate (ANS) at one tight binding site per dimer with a dissociation constant of 25.9 +/- 2.1 micrometer at pH 8.5 and 27 degrees C. This appears to be the substrate binding site, as indicated by the fact that ANS is a kinetically competitive reversible inhibitor with a Ki of 27.5 micrometer and by the fact that ANS competes with UMP for binding to the enzyme. Upon binding at this site the fluorescence quantum yield of ANS is enhanced 185-fold, and its emission spectrum is blue shifted from a lambdamax of 515 to 470.nm, which suggests that the binding site is shielded from water and probably hydrophobic. Competitive binding experiments with nucleosides and nucleotides indicate that nucleotide binding at this site involves coupled hydrophobic and electrostatic interactions. The reduced form of the enzyme (epimerase.NADH) has no detectable binding affinity for ANS. The marked difference in the affinities of the native and reduced enzymes for ANS is interpreted to be a manifestation of a conformational difference between these enzyme forms.  相似文献   

20.
Singh SK  Kishore N 《Biopolymers》2006,83(3):205-212
Isothermal titration calorimetry has been used to demonstrate that the heat profile associated with the binding of 8-anilino-1-naphthalene sulfonic acid (ANS) with the acid induced molten globule state (A-state) of alpha-lactalbumin (alpha-LA) is different from that with the native and denatured states of the protein. The results corroborate the spectroscopic observations that ANS binds more strongly to the partially folded states of the protein compared to that with the native and denatured states. ANS binds to the A-state of alpha-LA at two independent binding sites that remain nearly the same in the temperature range of 10-35 degrees C. The number of moles of ANS binding at site 1 at 10 degrees C is 14.0+/-0.2 and remains nearly the same with rise in temperature. However, the number of moles of ANS molecules binding at site 2 show an increase from 1.6+/-0.2 at 10 degrees C to 4.1+/-0.1 at 35 degrees C. The deviation of the slope of enthalpy-entropy compensation plot from unity and nonadherence to van't Hoff dictates implies that the binding sites on the A-state of alpha-LA for ANS are not well defined and specific; rather, these binding sites are formed due to greater exposure of hydrophobic clusters in the A-state of the protein. The results for the first time demonstrate the use of isothermal titration calorimetry in characterizing the A-state of alpha-LA both qualitatively and quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号