首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

2.
Alzheimer's disease is characterized by amyloid deposits in the parenchyma and vasculature of the brain. The plaques are mainly composed of amyloid beta (Abeta) peptides ending in residues 40 and 42. Novel longer Abeta peptides were found in brain homogenates of mouse models of Alzheimer's disease and human brain tissue of patients carrying the familial amyloid precursor protein V717F mutation. The biophysical characteristics of these longer Abeta peptides and their role in plaque formation are not understood. We chose to focus our studies on Abeta peptides ending in residues Ile45, Val46 and Ile47 as these peptides were identified in human brain tissue. A combination of circular dichroism and electron microscopy was used to characterize the secondary and tertiary structures of these peptides. All three longer Abeta peptides consisted mainly of a beta-sheet secondary structure. Electron microscopy demonstrated that these beta-structured peptides formed predominantly amorphous aggregates, which convert to amyloid fibres over extended time periods. As these longer peptides may act as seeds for the nucleation of fibrils composed predominantly of shorter amyloid peptides, these interactions were studied. All peptides accelerated the random to beta-structural transitions and fibril formation of Abeta40 and 42.  相似文献   

3.
Cerebral amyloid angiopathy (CAA) due to amyloid beta-protein (Abeta) is a key pathological feature of patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis, Dutch-type (HCHWA-D). The CAA in these disorders is characterized by deposition of Abeta in the smooth muscle cells within the cerebral vessel wall. Recently, a new mutation in Abeta, E22K, was identified in several Italian families that, like HCHWA-D, is associated with CAA and hemorrhagic stroke. These two similar disorders, stemming from amino acid substitutions at position 22 of Abeta, implicate the importance of this site in the pathology of HCHWA. Previously we showed that HCHWA-D Abeta(1-40) containing the E22Q substitution induces robust pathologic responses in cultured human cerebrovascular smooth muscle cells (HCSM cells), including highly elevated levels of cell-associated Abeta precursor (AbetaPP) and cell death. In the present study, a series of E22 mutant Abeta(1-40) peptides were synthesized, and their pathogenic properties toward cultured HCSM cells were evaluated. Quantitative fluorescence analyses showed that mutant Abeta(1-40) peptides either containing a loss of charge (E22Q and E22A) or a change of charge (E22K) bind to the surface of HCSM cells and form amyloid fibrils. Similarly, this same group of E22 mutant Abeta(1-40) peptides caused enhanced pathologic responses in HCSM cells. In contrast, wild-type E22 or the charge-preserving E22D Abeta(1-40) peptides were devoid of any of these pathogenic properties. These data suggest that a change or loss of charge at position 22 of Abeta enhances the pathogenic effects of the peptide toward HCSM cells and may contribute to the pathogenesis of the phenotypically related HCHWA disorders.  相似文献   

4.
Beta amyloid (Abeta) peptides accumulate in Alzheimer's disease and are neurotoxic possibly through the production of oxygen free radicals. Using brain microdialysis we characterized the ability of Abeta to increase oxygen radical production in vivo. The 1-40 Abeta fragment increased 2,3-dehydroxybenzoic acid efflux more than the 1-28 fragment, in a manner dependent on nitric oxide synthase and NMDA receptor channels. We then examined the effects of Abeta peptides on mitochondrial function in vitro. Induction of the mitochondrial permeability transition in isolated rat liver mitochondria by Abeta(25-35) and Abeta(35-25) exhibited dose dependency and required calcium and phosphate. Cyclosporin A prevented the transition as did ruthenium red, chlorpromazine, or N-ethylmaleimide. ADP and magnesium delayed the onset of mitochondrial permeability transition. Electron microscopy confirmed the presence of Abeta aggregates and swollen mitochondria and preservation of mitochondrial structure by inhibitors of mitochondrial permeability transition. Cytochrome c oxidase (COX) activity was selectively inhibited by Abeta(25-35) but not by Abeta(35-25). Neurotoxic Abeta peptide can increase oxidative stress in vivo through mechanisms involving NMDA receptors and nitric oxide sythase. Increased intracellular Abeta levels can further exacerbate the genetically driven complex IV defect in sporadic Alzheimer's disease and may precipitate mitochondrial permeability transition opening. In combination, our results provide potential mechanisms to support the feed-forward hypothesis of Abeta neurotoxicity.  相似文献   

5.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

6.
The conversion of soluble, nontoxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta rich in beta-sheet structures is considered to be the key step in the development of Alzheimer's disease. Therefore, extensive studies have been carried out on the mechanisms involved in Abeta aggregation and the characterization of Abeta aggregates formed in aqueous solutions mimicking biological fluids. On the other hand, several investigators pointed out that membranes play an important role in Abeta aggregation. However, it remains unclear whether Abeta aggregates formed in solution and membranes are identical and whether the former can bind to membranes. In this study, using a dye-labeled Abeta-(1-40) as well as native Abeta-(1-40), the properties of Abeta aggregates formed in buffer and raft-like membranes composed of monosialoganglioside GM1/cholesterol/sphingomyelin were compared. Fourier transform infrared spectroscopic measurements suggested that Abeta aggregates formed in buffer and in membranes have different beta-sheet structures. Fluorescence experiments revealed that Abeta aggregated in buffer did not show any affinity for membranes.  相似文献   

7.
Considerable circumstantial evidence suggests that Abeta42 is the initiating molecule in Alzheimer's disease (AD) pathogenesis. However, the absolute requirement for Abeta42 for amyloid deposition has never been demonstrated in vivo. We have addressed this by developing transgenic models that express Abeta1-40 or Abeta1-42 in the absence of human amyloid beta protein precursor (APP) overexpression. Mice expressing high levels of Abeta1-40 do not develop overt amyloid pathology. In contrast, mice expressing lower levels of Abeta1-42 accumulate insoluble Abeta1-42 and develop compact amyloid plaques, congophilic amyloid angiopathy (CAA), and diffuse Abeta deposits. When mice expressing Abeta1-42 are crossed with mutant APP (Tg2576) mice, there is also a massive increase in amyloid deposition. These data establish that Abeta1-42 is essential for amyloid deposition in the parenchyma and also in vessels.  相似文献   

8.
On the nucleation of amyloid beta-protein monomer folding   总被引:1,自引:0,他引:1  
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise.  相似文献   

9.
Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP. In addition, we demonstrate that this compound can effectively lower brain Abeta in vivo. In APP transgenic mice, acute oral administration of GSK188909 in the presence of a p-glycoprotein inhibitor to markedly enhance the exposure of GSK188909 in the brain decreases beta-cleavage of APP and results in a significant reduction in the level of Abeta40 and Abeta42 in the brain. Encouragingly, subchronic dosing of GSK188909 in the absence of a p-glycoprotein inhibitor also lowers brain Abeta. This pivotal first report of central Abeta lowering, following oral administration of a BACE-1 inhibitor, supports the development of BACE-1 inhibitors for the treatment of Alzheimer's disease.  相似文献   

10.
Oxidative damage is associated with Alzheimer's disease and mild cognitive impairment, but its relationship to the development of neuropathological lesions involving accumulation of amyloid-beta (Abeta) peptides and hyperphosphorylated tau protein remains poorly understood. We show that inducing oxidative stress in primary chick brain neurons by exposure to sublethal doses of H(2)O(2 )increases levels of total secreted endogenous Abeta by 2.4-fold after 20 h. This occurs in the absence of changes to intracellular amyloid precursor protein or tau protein levels, while heat-shock protein 90 is elevated 2.5-fold. These results are consistent with the hypothesis that aging-associated oxidative stress contributes to increasing Abeta generation and up-regulation of molecular chaperones in Alzheimer's disease.  相似文献   

11.
Cerebral amyloid angiopathy is commonly associated with normal aging and Alzheimer's disease and it is also the principal feature of hereditary cerebral hemorrhage with amyloidosis Dutch type, a familial condition associated to a point mutation G to C at codon 693 of the amyloid beta (Abeta) precursor protein gene resulting in a Glu to Gln substitution at position 22 of the Abeta (E22Q). The patients carrying the AbetaE22Q variant usually present with lobar cerebral hemorrhages before 50 years of age. A different mutation described in several members of three Italian kindred who presented with recurrent hemorrhagic strokes late in life, between 60 and 70 years of age, also associated with extensive cerebrovascular amyloid deposition has been found at the same position 22, this time resulting in a Glu to Lys substitution (E22K). We have compared the secondary structure, aggregation, and fibrillization properties of the two Abeta40 variants and the wild type peptide. Using flow cytometry analysis after staining with propidium iodide and annexin V, we also evaluated the cytotoxic effects of the peptides on human cerebral endothelial cells in culture. Under the conditions tested, the E22Q peptide exhibited the highest content of beta-sheet conformation and the fastest aggregation/fibrillization properties. The Dutch variant also induced apoptosis of cerebral endothelial cells at a concentration of 25 micrometer, whereas the wild type Abeta and the E22K mutant had no effect. The data suggest that different amino acids at position 22 confer distinct structural properties to the peptides that appear to influence the onset and aggressiveness of the disease rather than the phenotype.  相似文献   

12.
A major feature of Alzheimer's disease is the deposition of the amyloid beta peptide (Abeta) in the brain by mechanisms which remain unclear. One hypothesis suggests that oxidative stress and Abeta aggregation are interrelated processes. Protein kinase C, a major neuronal regulatory protein is activated after oxidative stress and is also altered in the Alzheimer's disease brain. Therefore, we examined the effects of Abeta(1-40) peptide on the protein kinase C cascade and cell death in primary neuronal cultures following anoxic conditions. Treatment with Abeta(1-40) for 48 h caused a significant increase in the content and activity of Ca2+ dependent and Ca2+ independent protein kinase C isoforms. By 72 h various protein kinase C isoforms were down-regulated. Following 90 min anoxia and 6 h normoxia, a decrease in protein kinase C isoforms was noticed, independent of Abeta(1-40) treatment. A combination of Abeta(1-40) and 30-min anoxia enhanced cytotoxicity as noticed by a marked loss in the mitochondrial ability to convert 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and by enhanced 4',6-diamidino-2-phenylindole nuclear staining. Phosphorylation of two downstream protein kinase C substrates of apparent molecular mass 80 and 43 kDa, tentatively identified as the myristoyl alanine-rich C-kinase substrate (MARCKS), were gradually elevated up to 72 h upon incubation with Abeta(1-40). Anoxia followed by 30 min normoxia enhanced MARCKS phosphorylation in the membrane but not in the cytosolic fraction. In the presence of Abeta(1-40), phosphorylation of MARCKS was reduced. After 6 h normoxia, MARCKS phosphorylatability was diminished possibly because of protein kinase C down-regulation. The data suggest that a biphasic modulation of protein kinase C and MARCKS by Abeta(1-40) combined with anoxic stress may play a role in Alzheimer's disease pathology.  相似文献   

13.
Oxidative stress is one of the factor contributing to blood brain barrier degeneration. This phenomenon is observed during pathological conditions such as Alzheimer's disease or cerebral amyloid angiopathy in which brain haemorrhages are very frequent. Both diseases are characterized by beta amyloid peptide deposition either in neurons or in vessels. Oxidative stress leads to impairment of mitochondrial functions and apoptotic cell death subsequent to caspases activation. In this paper we demonstrate that BH4 domain of Bcl-xl administrated to endothelial cells as the conjugated form with TAT peptide, reverts Abeta-induced apoptotic cell death by activating a survival programme which is Akt/endothelial nitric oxide synthase dependent.  相似文献   

14.
Amyloid-beta peptides (Abeta) play an important role in the pathophysiology of dementia of the Alzheimer's type and in amyloid angiopathy. Abeta outside the CNS could contribute to plaque formation in the brain where its entry would involve interactions with the blood-brain barrier (BBB). Effective antibodies to Abeta have been developed in an effort to vaccinate against Alzheimer's disease. These antibodies could interact with Abeta in the peripheral blood, block the passage of Abeta across the BBB, or prevent Abeta deposition within the CNS. To determine whether the blocking antibodies act at the BBB level, we examined the influx of radiolabeled Abeta (125I-Abeta(1-40)) into the brain after ex-vivo incubation with the antibodies. Antibody mAb3D6 (élan Company) reduced the blood-to-brain influx of Abeta after iv bolus injection. It also significantly decreased the accumulation of Abeta in brain parenchyma. To confirm the in-vivo study and examine the specificity of mAb3D6, in-situ brain perfusion in serum-free buffer was performed after incubation of 125I-Abeta(1-40) with another antibody mAbmc1 (DAKO Company). The presence of mAbmc1 also caused significant reduction of the influx of Abeta into the brain after perfusion. Therefore, effective antibodies to Abeta can reduce the influx of Abeta(1-40) into the brain.  相似文献   

15.
Alzheimer's disease (AD) is characterized by the presence of large numbers of fibrillar amyloid deposits in the form of senile plaques in the brain. The fibrils in senile plaques are composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the pathogenesis of AD, and many laboratories have investigated soluble Abeta aggregates generated from monomeric Abeta in vitro. Of these in vitro aggregates, the best characterized are called protofibrils. They are composed of globules and short rods, show primarily beta-structure by circular dichroism (CD), enhance the fluorescence of bound thioflavin T, and readily seed the growth of long fibrils. However, one difficulty in correlating soluble Abeta aggregates formed in vitro with those in vivo is the high probability that cellular interfaces affect the aggregation rates and even the aggregate structures. Reports that focus on the features of interfaces that are important in Abeta aggregation have found that amphiphilic interactions and micellar-like Abeta structures may play a role. We previously described the formation of Abeta(1-40) aggregates at polar-nonpolar interfaces, including those generated at microdroplets formed in dilute hexafluoro-2-propanol (HFIP). Here we compared the Abeta(1-40) aggregates produced on sodium dodecyl sulfate (SDS) micelles, which may be a better model of biological membranes with phospholipids that have anionic headgroups. At both HFIP and SDS interfaces, changes in peptide secondary structure were observed by CD immediately when Abeta(1-40) was introduced. With HFIP, the change involved an increase in predominant beta-structure content and in fluorescence with thioflavin T, while with SDS, a partial alpha-helical conformation was adopted that gave no fluorescence. However, in both systems, initial amorphous clustered aggregates progressed to soluble fibers rich in beta-structure over a roughly 2 day period. Fiber formation was much faster than in the absence of an interface, presumably because of the close intermolecular proximity of peptides at the interfaces. While these fibers resembled protofibrils, they failed to seed the aggregation of Abeta(1-40) monomers effectively.  相似文献   

16.
The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded elongation by Abeta monomer deposition very poorly. The techniques used to distinguish these two classes of soluble Abeta aggregates may be useful in characterizing Abeta aggregates formed in vivo.  相似文献   

17.
Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.  相似文献   

18.
ABCA1 (ATP-binding cassette transporter A1) is a major regulator of cholesterol efflux and high density lipoprotein (HDL) metabolism. Mutations in human ABCA1 cause severe HDL deficiencies characterized by the virtual absence of apoA-I and HDL and prevalent atherosclerosis. Recently, it has been reported that the lack of ABCA1 causes a significant reduction of apoE protein level in the brain of ABCA1 knock-out (ABCA1-/-) mice. ApoE isoforms strongly affect Alzheimer disease (AD) pathology and risk. To determine further the effect of ABCA1 on amyloid deposition, we used APP23 transgenic mice in which the human familial Swedish AD mutant is expressed only in neurons. We demonstrated that the targeted disruption of ABCA1 increases amyloid deposition in APP23 mice, and the effect is manifested by an increased level of Abeta immunoreactivity, as well as thioflavine S-positive plaques in brain parenchyma. We found that the lack of ABCA1 also considerably increased the level of cerebral amyloid angiopathy and exacerbated cerebral amyloid angiopathy-related microhemorrhage in APP23/ABCA1-/- mice. Remarkably, the elevation in parenchymal and vascular amyloid in APP23/ABCA1-/- mice was accompanied by a dramatic decrease in the level of soluble brain apoE, although insoluble apoE was not changed. The elevation of insoluble Abeta fraction in old APP23/ABCA1-/- mice, accompanied by a lack of changes in APP processing and soluble beta-amyloid in young APP23/ABCA1-/- animals, supports the conclusion that the ABCA1 deficiency increases amyloid deposition. These results suggest that ABCA1 plays a role in the pathogenesis of parenchymal and cerebrovascular amyloid pathology and thus may be considered a therapeutic target in AD.  相似文献   

19.
Our early study indicates that intracellular Abeta1-42 aggregates are resistant to degradation and accumulate as an insoluble residue in lysosomes, where they alter the normal catabolism of amyloid precursor protein (APP) to cause the accumulation of insoluble APP and amyloidogenic fragments. In this study, we examined whether the addition of exogenous Abeta1-42 also leads to the accumulation of newly synthesized intracellular Abeta. Here we describe that newly synthesized Abeta, especially Abetan-42, is generated from metabolically labeled APP and accumulates in the insoluble fraction of cell lysates after Abeta1-42 treatment. These results suggest that intracellular Abeta may derive from a solid phase, intracellular pathway. In contrast to the pathway that primarily produces secreted Abeta1-40, the solid-phase intracellular pathway preferentially produces Abetan-42 with ragged amino termini. Biochemical studies and amino acid sequencing analyses indicate that these intracellular Abeta also share the same types of Abeta structures that accumulate in the brain of Alzheimer's disease patients, suggesting that a significant fraction of the amyloid deposits in Alzheimer's disease may arise by this solid-phase pathway.  相似文献   

20.
Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into the mechanisms of toxicity instigated by soluble protein oligomers, we have investigated the aggregation of hen egg white lysozyme (HEWL), a normally harmless protein. HEWL initially aggregates into beta-sheet rich, roughly spherical oligomers which appear to convert with time into protofibrils and mature amyloid fibrils. HEWL oligomers are potently neurotoxic to rat cortical neurons in culture, while mature amyloid fibrils are little or non-toxic. Interestingly, when added to cortical neuronal cultures HEWL oligomers induce tau hyperphosphorylation at epitopes that are characteristically phosphorylated in neurons exposed to soluble oligomers of the amyloid-beta peptide. Furthermore, injection of HEWL oligomers in the cerebral cortices of adult rats induces extensive neurodegeneration in different brain areas. These results show that soluble oligomers from a non-disease related protein can mimic specific neuronal pathologies thought to be induced by soluble amyloid-beta peptide oligomers in Alzheimer's disease and support the notion that amyloid oligomers from different proteins may share common structural determinants that would explain their generic cytotoxicities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号