首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.  相似文献   

4.
5.
Vascular endothelial growth factor (VEGF) is a hypoxia-induced angiogenic protein that exhibits a broad range of biological and pathological effects in wet age-related macular degeneration and proliferative diabetic retinopathy. However, its specific mechanism is still not fully understood. Here, we examined the effects of VEGF on choroid-retinal endothelial cells (RF/6A) proliferation and tube formation, and the underlying signal pathways responsible in this process. RF/6A cells were pretreated with MEK inhibitor or PI3K inhibitor, and then incubated in a hypoxia chamber. Real-time PCR and Western blot analysis were carried out to explore VEGF expression on mRNA and protein levels. Hypoxia inducible factor-1α (HIF-1α) and VEGFR2 expression levels were also investigated in the presence and absence of hypoxic conditions. CCK-8 analysis and tube formation assay were tested under hypoxia, exogenous recombinant VEGF, and different signal pathway inhibitors, respectively. Mean while, the PI3K/Akt and MEK/ERK pathways in this process were also investigated. Our results showed that VEGF, HIF-1α, VEGFR2, p-ERK, and p-Akt were up-regulated in RF/6A cells under hypoxic conditions. MEK inhibitor (PD98059) and PI3K inhibitor (LY294002) decreased ERK and Akt activity, respectively, and reduced VEGF expression. VEGF-induced RF/6A proliferation and tube formation requires MEK/ERK and PI3K/Akt signaling, and both of the two pathways were needed in regulating VEGF expression. These suggest that VEGF plays an important role in RF/6A proliferation and tube formation, and MEK/ERK and PI3K/Akt pathway may be responsible for this process.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Du J  Xu R  Hu Z  Tian Y  Zhu Y  Gu L  Zhou L 《PloS one》2011,6(9):e25213

Background

Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.

Methodology/Principal Findings

In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.

Conclusions/Significance

Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.  相似文献   

13.
14.
15.
Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

17.
18.
In vivo, ischemia is known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Hypoxia-induced vascular endothelial growth factor (VEGF) has been shown to be a key regulator of these permeability changes. However, the signaling pathways that underlie VEGF-induced hyperpermeability are incompletely understood. In this study, we demonstrate that hypoxia- and VEGF-induced permeability changes depend on activation of phospholipase Cgamma (PLCgamma), phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), and protein kinase G (PKG). Inhibition of mitogen-activated protein kinases (MAPK) and of the protein kinase C (PKC) did not affect permeability at all. Paralleling hypoxia- and VEGF-induced permeability changes, localization of the tight junction proteins occludin, zonula occludens-1 (ZO-1), and ZO-2 along the cell membrane changed from a continuous to a more discontinuous expression pattern during hypoxia. In particular, localization of ZO-1 and ZO-2 expression moved from the cell membrane to the cytoplasm and nucleus whereas occludin expression remained at the cell membrane. Inhibition of PLCgamma, PI3-kinase, and PKG abolished these hypoxia-induced changes. These findings demonstrate that hypoxia and VEGF induce permeability through rearrangement of endothelial junctional proteins which involves activation of the PLCgamma and PI3-K/AKT pathway leading to the activation of PKG.  相似文献   

19.
Hypoxic preconditioning (HP) 24 h before hypoxic-ischemic (HI) injury confers significant neuroprotection in neonatal rat brain. Recent studies have shown that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) intracellular signaling pathways play a role in the induction of tolerance to ischemic injury in heart and brain. To study the role of MAPK (ERK1/2, JNK, p38MAPK) and PI3K/Akt/GSK3beta signaling pathways in hypoxia-induced ischemic tolerance, we examined the brains of newborn rats at different time points after exposure to sublethal hypoxia (8% O(2) for 3 h). Immunoblot analysis showed that HP had no effect on the levels of phosphorylated Akt, GSK3beta, JNK and p38MAPK. In contrast, significantly increased levels of phosphorylated ERK1/2 were observed 0.5 h after HP. Double immunofluorescence staining showed that hypoxia-induced ERK1/2 phosphorylation was found mainly in microvessels throughout the brain and in astrocytes in white matter tracts. Inhibition of hypoxia-induced ERK1/2 pathway with intracerebral administration of U0126 significantly attenuated the neuroprotection afforded by HP against HI injury. These findings suggest that activation of ERK1/2 signaling may contribute to hypoxia-induced tolerance in neonatal rat brain in part by preserving vascular and white matter integrity after HI.  相似文献   

20.
17beta-Estradiol (E(2)) is a steroid hormone well known for its roles in the regulation of various cell functions. However, the precise role that E(2) plays in the proliferation of human mesenchymal stem cells (hMSCs) has not been completely elucidated. In the present study, we examined the effects of E(2) on cell proliferation and the related signaling pathways using hMSCs. We showed that E(2), at > or =10(-9) M, significantly increased [3H]thymidine incorporation after 24 h of incubation, and E(2) also increased [3H]thymidine incorporation at >6 h. Also, E(2) significantly increased the percentage of the cell population in the S phase based on FACS analysis. Moreover, E(2) increased estrogen receptor (ER), PKC, phosphatidylinositol 3-kinase (PI3K)/Akt, and MAPK phosphorylation. Subsequently, these signaling molecules were involved in an E(2)-induced increase of [3H]thymidine incorporation. E(2) also increased hypoxia-inducible factor (HIF)-1alpha and VEGF protein levels. These levels of protein expression were inhibited by ICI-182,780 (10(-6) M, an ER antagonist), staurosporine and bisindolylmaleimide I (10(-6) M, a PKC inhibitor), LY-294002 (10(-6) M, a PI3K inhibitor), Akt inhibitor (10(-5) M), SP-600125 (10(-6) M, a SAPK/JNK inhibitor), and PD-98059 (10(-5) M, a p44/42 MAPKs inhibitor). In addition, HIF-1alpha small interfering (si)RNA and ICI-182,780 inhibited E(2)-induced VEGF expression and cell proliferation. VEGF siRNA also significantly inhibited E(2)-induced cell proliferation. In conclusion, E(2) partially stimulated hMSC proliferation via HIF-1alpha activation and VEGF expression through PKC, PI3K/Akt, and MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号