首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequencing method was first introduced by the 454 Company in 2003, immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research. Supported by the National High-Tech Research Program of China (Grant No.2006AA020704) and Shanghai Science and Technology Commission (Grant No. 05DZ22201)  相似文献   

2.
One of the central aims of cancer research is to identify and characterize cancer-causing alterations in cancer genomes. In recent years, unprecedented advances in genome-wide sequencing, functional genomics technologies for RNA interference screens and methods for evaluating three-dimensional chromatin organization in vivo have resulted in important discoveries regarding human cancer. The cancer-causing genes identified from these new genome-wide technologies have also provided opportunities for effective and personalized cancer therapy. In this review, we describe some of the most recent technologies for cancer gene discovery. We also provide specific examples in which these technologies have proven remarkably successful in uncovering important cancer-causing alterations.  相似文献   

3.
4.
转录组研究一直是生命科学研究的一个重要方向,在第二代测序技术问世以前,已经产生了一些行之有效的转录组研究方法,但这些方法存在一定的局限性。第二代测序技术的出现不仅使转录组研究很快进入了高速发展期,同时也为遗传资源的挖掘提供了一套全新的技术平台。本文简要介绍了第二代测序技术的化学原理和特性,重点阐述了利用第二代测序技术进行转录组测序,从而在此基础上挖掘遗传资源的研究。  相似文献   

5.
DNA测序技术是现代生命科学研究的重要工具之一,而高通量测序技术在全基因组的研究中发挥着越来越重要的作用。简要回溯DNA测序技术的产生与发展,着重从PCR扩增测序和单分子测序两个方面全面描述了高通量测序中众多代表性的技术及直接测序技术,并从DNA甲基化、组蛋白修饰、非编码RNA调控等方面阐述了高通量测序技术在表观遗传学上的运用。  相似文献   

6.
Deciphering the complex molecular dialogue between the maternal tract and embryo is crucial to increasing our understanding of pregnancy failure, infertility problems and in the modulation of embryo development, which has consequences through adulthood. High-throughput genomic technologies have been applied to look for a holistic view of the molecular interactions occurring during this dialogue. Among these technologies, microarrays have been widely used, being one of the most popular tools in maternal-embryo communication. Today, next generation sequencing technologies are dwarfing the capabilities of microarrays. The application of these new technologies has broadened to almost all areas of genomics research, because of their massive sequencing capacity. We review the current status of high-throughput genomic technologies and their application to maternal-embryo communication research. We also survey next generation technologies and their huge potential in many research areas. Given the diversity of unanswered questions in the field of maternal-embryo communication and the wide range of possibilities that these technologies offer, here we discuss future perspectives on the use of these technologies to enhance maternal-embryo research.  相似文献   

7.
马属(Equus)动物的祖先大约在5500万年前出现,经过持续分化形成现今的马、驴和斑马,统称马属动物。马作为家畜中的重要一员,是推动人类文明发展的载体,在人类的饮食、战争、农耕、运输和娱乐等领域做出了巨大贡献。然而,人类为了满足需求,或多或少影响着马的进化方向,从而在长时间自然和人工选择过程中形成了多种独具特色性状的不同马种。驴和骡在全球的存栏量也较多,在人类的生产和生活中起到的作用同样不可忽视,不但为人类提供了生产力而且还提供了食物和营养保健品。可见,马属动物对人类的重要性。近年来,高通量测序技术和生物信息学分析方法被广泛运用于家畜的遗传学研究。人们利用高通量测序手段探索马属动物在进化过程中的种群变化历史,解析形成独特性状的分子机制,为其育种工作提供有效的数据支持。本文综述了马属动物全基因组高通量测序的研究进展,以及利用该技术在马属动物的进化历史和功能基因挖掘研究领域所取得的成就,以期今后对马属动物的深入研究、产业开发和利用等方面提供参考信息。  相似文献   

8.
9.
Next-generation sequencing technologies for environmental DNA research   总被引:7,自引:0,他引:7  
Since 2005, advances in next-generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species-specific DNA barcodes has been a key application of next-generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next-generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next-generation sequencing technologies in regard to their application for environmental DNA analysis.  相似文献   

10.
Large volumes of genomic data have been generated for several plant species over the past decade, including structural sequence data and functional annotation at the genome level. Various technologies such as expressed sequence tags (ESTs), massively parallel signature sequencing (MPSS) and microarrays have been used to study gene expression and to provide functional data for many genes simultaneously. This review focuses on recent advances in the application of microarrays in plant genomic research and in gene expression databases available for plants. Large sets of Arabidopsis microarray data are publicly available. Recently developed array platforms are currently being used to generate genome-wide expression profiles for several crop species. Coupled to these platforms are public databases that provide access to these large-scale expression data, which can be used to aid the functional discovery of gene function.  相似文献   

11.
The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence’ highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease. As high‐throughput sequencing allows us to define genetic variation and its functional consequences at genome‐wide resolution for a large number of people, important questions need to be asked about how to use new technologies to maximize the translational relevance of genetic research for society and the individual patient.  相似文献   

12.
It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies. A host of new approaches has fundamentally changed the way we approach problems in basic and translational research. Now, a new generation of high-throughput sequencing technologies promises to again transform the scientific enterprise, potentially supplanting array-based technologies and opening up many new possibilities. By allowing DNA/RNA to be assayed more rapidly than previously possible, these next-generation platforms promise a deeper understanding of genome regulation and biology. Significantly enhancing sequencing throughput will allow us to follow the evolution of viral and bacterial resistance in real time, to uncover the huge diversity of novel genes that are currently inaccessible, to understand nucleic acid therapeutics, to better integrate biological information for a complete picture of health and disease at a personalized level and to move to advances that we cannot yet imagine.  相似文献   

13.
For more than a quarter of a century, sequencing technologies from Sanger’s method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.  相似文献   

14.
施季森  王占军  陈金慧 《遗传》2012,34(2):145-156
近年来, 植物全基因组测序的结果正如雨后春笋般涌现, 木本植物全基因组测序也在紧锣密鼓地展开。但由于木本植物通常基因组较大, 基因组结构较为复杂, 在测序、测序后的组装、注释、功能分析等均存在较大的困难。在基因组测序分析的经费预算方面也存在着较大的压力。因此, 有必要对这方面的研究进展及其存在问题进行分析比较, 以提高林木全基因组研究方面的效率。文章在比较分析已经发展起来的3代基因测序技术(Sanger测序法、合成测序法和单分子测序法)的基础上, 选择4种已经公布的木本植物(杨树、葡萄、番木瓜、苹果), 从全基因组测序的研究背景、测序结果及应用的研究进展和存在问题等方面进行了述评, 对未来要开展的木本植物全基因组测序前的准备工作(材料选择、遗传图谱和连锁图谱的构建、测序技术的选择), 全基因组测序结果的生物信息学分析和应用进行了讨论。  相似文献   

15.
We now entering an era of the mass-analysis of genetic information, which will signal the beginning of the study of living organisms on the basis of their most detailed plan: the DNA base-sequence. The researcher's essential requirement in reading and deciphering the DNA base-sequence is the precision, speed, reliability, and low cost of such operation.I have long stressed that these requirements can only be satisfied by estabilishing a centralized organization, a DNA sequencing factory, where a large-scale and international operation of the sequencing can be carried out with the assistance of high technologies and under an administration which equitably represents the research interests of researchers worlwide. In this context, the basic concept and aims of the Japanese projects which was begun in 1981 are described, detailing the advantages of such a factory with a mega-base daily output. Scientists and engineers and devising a high speed and automated DNA sequencing system by coordinating available DNA-processing technologies, particularly in the field of computer/robotic engineering. Typical of the achievements of this enterprise is the recent progress made by RIKEN in the development of a DNA mass-sequencing line which aims the production of raw base-sequence data of 0.1 mega-base per day (machine throughput).Finally, the elemental units in the current DNA sequencing procedures and the means of DNA processing are displayed on a family tree network to illustrate their functional interrelation in the current scheme of DNA analysis. It is hoped that this will provide a clue to finding new dimensions in DNA processing.  相似文献   

16.
木本植物全基因组测序研究进展   总被引:4,自引:0,他引:4  
Shi JS  Wang ZJ  Chen JH 《遗传》2012,34(2):145-156
近年来,植物全基因组测序的结果正如雨后春笋般涌现,木本植物全基因组测序也在紧锣密鼓地展开。但由于木本植物通常基因组较大,基因组结构较为复杂,在测序、测序后的组装、注释、功能分析等均存在较大的困难。在基因组测序分析的经费预算方面也存在着较大的压力。因此,有必要对这方面的研究进展及其存在问题进行分析比较,以提高林木全基因组研究方面的效率。文章在比较分析已经发展起来的3代基因测序技术(Sanger测序法、合成测序法和单分子测序法)的基础上,选择4种已经公布的木本植物(杨树、葡萄、番木瓜、苹果),从全基因组测序的研究背景、测序结果及应用的研究进展和存在问题等方面进行了述评,对未来要开展的木本植物全基因组测序前的准备工作(材料选择、遗传图谱和连锁图谱的构建、测序技术的选择),全基因组测序结果的生物信息学分析和应用进行了讨论。  相似文献   

17.
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.  相似文献   

18.
基于第二代测序技术的细菌基因组与转录组研究策略简介   总被引:2,自引:0,他引:2  
随着基于第二代测序技术的细菌基因组与转录组研究越来越广泛,选择合适的研究策略变得越来越重要.就基于第二代测序技术的细菌基因组和转录组研究策略进行综述,并简要介绍细菌基因组和转录组研究中的机遇和挑战.综述细菌基因组与转录组研究的常规方法及步骤,并简要地介绍存在的问题.细菌基因组和转录组研究策略为大多数细菌的研究提供了一个...  相似文献   

19.
20.
Metagenomics has paved the way for cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. In recent years, significant progress has been made in this research area. A major breakthrough was the improvement and development of high-throughput next-generation sequencing technologies. The application of these technologies resulted in the generation of large datasets derived from various environments such as soil and ocean water. The analyses of these datasets opened a window into the enormous phylogenetic and metabolic diversity of microbial communities living in a variety of ecosystems. In this way, structure, functions, and interactions of microbial communities were elucidated. Metagenomics has proven to be a powerful tool for the recovery of novel biomolecules. In most cases, functional metagenomics comprising construction and screening of complex metagenomic DNA libraries has been applied to isolate new enzymes and drugs of industrial importance. For this purpose, several novel and improved screening strategies that allow efficient screening of large collections of clones harboring metagenomes have been introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号