首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mongrel dogs bred for research and weighing 25 +/- 3 kg were used to test the hypothesis that acetaminophen has antiar-rhythmic properties. Only ventricular arrhythmias defined by the Lambeth Conventions were investigated. Dogs were exposed either to 60 mins of regional myocardial ischemia followed by 180 mins of reperfusion (n = 14) or were administered a high dose of ouabain (n = 14). Both groups of 14 dogs were further divided into vehicle and acetaminophen treatment groups (n = 7 in each). During selected 10-min intervals, we recorded the numbers of ventricular premature beats, ventricular salvos, ventricular bigeminy, ventricular tachycardia (nonsustained and sustained), and we recorded the heart rate, systemic arterial blood pressure, and left ventricular function. Neither heart rate nor the number of ventricular arrhythmias differed significantly under baseline conditions. Conversely, the combined average number of ventricular ectopic beats during ischemia and reperfusion was significantly less in the presence of acetaminophen (28 +/- 4 vs. 6 +/- 1; P < 0.05). Similarly, percent ectopy during reperfusion in vehicle- and acetaminophen-treated dogs was 1.4 +/- 0.4 and 0.4 +/- 0.2, respectively (P < 0.05). The number of all ventricular ectopic beats except ventricular salvos was also significantly reduced in the presence of acetaminophen. Similar results were obtained with ouabain. Our results reveal that systemic administration of a therapeutic dose of acetaminophen has previously unreported antiarrhythmic effects in the dog.  相似文献   

2.
The hypothesis that acetaminophen can reduce necrosis during myocardial infarction was tested in male dogs. Two groups were studied: vehicle- (n=10) and acetaminophen-treated (n=10) dogs. All dogs were obtained from the same vendor, and there were no significant differences in their ages (18 +/- 2 mo), weights (24 +/- 1 kg), or housing conditions. Selected physiological data, e.g., coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, left ventricular developed pressure, the maximal first derivative of left ventricular developed pressure, blood gases, and pH, were collected at baseline and during regional myocardial ischemia and reperfusion. There were no significant differences in coronary blood flow, nonspecific collateral flow, epicardial temperature, heart rate, systemic mean arterial pressure, or blood gases and pH between the two groups at any of the three time intervals, even though there was a trend toward improved function in the presence of acetaminophen. Infarct size, the main objective of the investigation, was markedly and significantly reduced by acetaminophen. For example, when expressed as a percentage of ventricular wet weight, infarct size was 8 +/- 1 versus 3 +/- 1%(P <0.05) in vehicle- and acetaminophen-treated hearts, respectively. When infarct size was expressed as percentage of the area at risk, it was 35 +/- 3 versus 13 +/- 2% (P <0.05) in vehicle- and acetaminophen-treated groups, respectively. When area at risk was expressed as percentage of total ventricular mass, there were no differences in the two groups. Results reveal that the recently reported cardioprotective properties of acetaminophen in vitro can now be extended to the in vivo arena. They suggest that it is necessary to add acetaminophen to the growing list of pharmaceuticals that possess cardioprotective efficacy in mammals.  相似文献   

3.
Acetaminophen was administered acutely at the onset of reperfusion after 20 min of low-flow, global myocardial ischemia in isolated, perfused guinea pig hearts (Langendorff) to evaluate its influence in the postischemia, reperfused myocardium. Similarly prepared hearts were treated with vehicle or with uric acid (another phenol for comparison). Functionally, acetaminophen-treated hearts (0.35 mM) achieved significantly greater recovery during reperfusion. For example, left ventricular developed pressures at 40 min reperfusion were 38 +/- 3, 27 +/- 3, and 20 +/- 2 in the presence of acetaminophen (P < 0.05, relative to the other two groups), vehicle, and uric acid, respectively. Coronary perfusion pressures and calculated coronary vascular resistances, in the acetaminophen-treated hearts, were significantly lower at the same time (e.g., coronary perfusion pressures in the three groups, respectively, were 40 +/- 2 [P < 0.05], 51 +/- 3, and 65 +/- 12 mm Hg). Under baseline, control conditions, creatine kinase ranged from 12-15 units/liter in the three groups. It increased to 35-40 units/liter (P < 0.05) during ischemia but was significantly reduced by acetaminophen during reperfusion (e.g., 5.3 +/- 0.8 units/liter at 40 min). Oxidant-mediated chemiluminescence in all three treatment groups during baseline conditions and ischemia was similar (i.e., approximately 1.5-2.0 min for peak luminescence to reach its half maximal value). It took significantly more time during reperfusion for the oxidation of luminol in the presence of acetaminophen (>20 min, P < 0.05) than in its absence (3-8 min in uric acid- and vehicle-treated hearts). These results suggest that administration of acetaminophen (0.35 mM), at the onset of reperfusion, provides anti-oxidant-mediated cardioprotection in the postischemia, reperfused myocardium.  相似文献   

4.
We investigated the effects of 0.35-mM acetaminophen and its vehicle on isolated, perfused guinea pig hearts made hypoxic and subsequently reoxygenated. Hearts were allowed 30 min postinstrumentation to reach baseline, steady-state values, and then were exposed to 6 min of hypoxia (5% O(2), 5% CO(2), balance N(2)) followed by 36 min of reoxygenation (95% O(2), 5% CO(2)). We recorded hemodynamic, metabolic, and mechanical data in addition to assessing ultrastructure and the capacity of coronary venous effluent to reduce reactive oxygen species. We found that acetaminophen-treated hearts retained a greater fraction of mechanical function during hypoxia and reoxygenation. For example, the average percentage change from baseline of left ventricular developed pressure in acetaminophen- and vehicle-treated hearts at 6 min reoxygenation was 9 +/- 2% and -8 +/- 5% (P < 0.05), respectively. In addition, electron micrographs revealed greater preservation of myofibrillar ultrastructure in acetaminophen-treated hearts. Biochemical analyses revealed the potential of coronary effluent from acetaminophen-treated hearts to significantly neutralize peroxynitrite-dependent chemiluminescence in all recorded time periods. During early reoxygenation, the percentage inhibition of peroxynitrite-mediated chemiluminescence was 56 +/- 10% in vehicle-treated hearts and 99 +/- 1% in acetaminophen-treated hearts (P < 0.05). We conclude that acetaminophen has previously unreported cardioprotective properties in the nonischemic, hypoxic, and reoxygenated myocardium mediated through the reduction of reactive oxygen species.  相似文献   

5.
Acetaminophen is a phenol with antioxidant properties, but little is known about its actions on the mammalian myocardium and coronary circulation. We studied isolated, perfused guinea pig hearts, and tested the hypothesis that acetaminophen-treated hearts would be protected during ischemia-reperfusion. Acetaminophen concentrations in the range of 0.3-0.6 mmol/l caused modest but significant (P < 0.05) coronary vasoconstriction and positive inotropy. The effects were more brisk during constant pressure perfusion than during constant flow. During 20 min of low-flow, global myocardial ischemia and 40 min of reperfusion, hearts treated with acetaminophen retained or recovered a greater percentage of left ventricular function than hearts treated with vehicle. Myofibrillar ultrastructure appeared to be preserved in the reperfused myocardium with acetaminophen. By using chemiluminescence and spin-trap methodologies, we investigated acetaminophen-mediated antioxidant mechanisms to help explain the cardioprotection. The burst of hydroxyl radicals seen between 0 and 10 min of reperfusion was significantly attenuated (P < 0.05) by acetaminophen but not by vehicle. The 3-morpholinosydnominine (SIN-1) generation of peroxynitrite and its oxidative interaction with luminol to produce blue light during ischemia-reperfusion was also blocked by acetaminophen. Our results show that acetaminophen provides significant functional and structural protection to the ischemic-reperfused myocardium, and the mechanism of cardioprotection seems to involve attenuation of the production of both hydroxyl radicals and peroxynitrite.  相似文献   

6.
Male and female Hartley strain guinea pigs weighing 280 +/- 10 g were given acetaminophen-treated water ad libitum for 10 days. Sham-treated control animals were given similar quantities of untreated tap water (vehicle-treated control group). On Day 10, hearts were extracted, instrumented, and exposed to an ischemia (low-flow, 20 min)/reperfusion protocol. Our objective was to compare and contrast ventricular function, coronary circulation, and selected biochemical and histological indices in the two treatment groups. Left ventricular developed pressure in the early minutes of reperfusion was significantly greater in the presence of acetaminophen, e.g., at 1 min, 40 +/- 4 vs 21 +/- 3 mmHg (P < 0.05). Coronary perfusion pressure was significantly less from 3 to 40 min of reperfusion in the presence of acetaminophen. Creatine kinase release in vehicle-treated hearts rose from 42 +/- 14 (baseline) to 78 +/- 25 units/liter by the end of ischemia. Corresponding values in acetaminophen-treated hearts were 36 +/- 8 and 44 +/- 14 units/liter. Acetaminophen significantly (P < 0.05) attenuated release of creatine kinase. Chemiluminescence, an indicator of the in vitro production of peroxynitrite via the in vivo release of superoxide and nitric oxide, was also significantly attenuated by acetaminophen. Electron microscopy indicated a well-preserved myofibrillar ultrastructure in the postischemic myocardium of acetaminophen-treated hearts relative to vehicle-treated hearts (e.g., few signs of contraction bands, little or no evidence of swollen mitochondria, and well-defined light and dark bands in sarcomeres with acetaminophen; opposite with vehicle). We conclude that chronic administration of acetaminophen provides cardioprotection to the postischemic, reperfused rodent myocardium.  相似文献   

7.
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.  相似文献   

8.
Although it has been shown that long-term exercise training preserves endothelium-mediated nitric oxide vasodilator function in chronic heart failure (CHF), whether exercise training exerts similar beneficial effects on endothelial/prostaglandin-mediated vasodilator capacity in coronary circulation during the development of CHF has not been determined. Fifteen mongrel dogs were surgically instrumented for measurement of left ventricular pressure, aortic pressure, coronary blood flow and left circumflex coronary artery diameter. Dogs (n = 5) who underwent 4 weeks of cardiac pacing (210 b/min for 3 weeks and 240 b/min for the 4th week) developed CHF as characterized by significant reduction in left ventricular systolic pressure, mean arterial pressure and left ventricular dP/dt, increases in left ventricular end-diastolic pressure and heart rate, as well as clinical signs of CHF. Endothelial prostaglandin-mediated vasodilation of the epicardial coronary artery was impaired, as manifested by an attenuated arachidonic acid (AA)-induced dilation of the artery (epicardial artery diameter increased by: 0.78 +/- 0. 84% in CHF versus 4.6 +/- 0.89% in normal, P < 0.05); however, prostacyclin (PGI(2))-induced and nitroglycerin-induced vasodilation of the coronary circulation were not altered. In contrast, dogs (n = 6) with cardiac pacing plus daily exercise training (4.4 +/- 0.3 km/h, 2 h/day) only developed mild cardiac dysfunction, and the response of the epicardial coronary artery diameter to AA was preserved (epicardial artery diameter increased by 4.2 +/- 0.98% from baseline, P 0.05 compared to its respective control). Thus, long-term exercise training preserves endothelial/prostaglandin-mediated dilation of epicardial coronary artery during development of CHF.  相似文献   

9.
Ischemia-reperfusion injury in the heart results in enhanced production of H2O2 and activation of AMP-activated protein kinase (AMPK). Since mutations in AMPK result in cardiovascular dysfunction, we investigated whether the activation of AMPK mediates the H2O2-induced reduction in cardiac mechanical function. Isolated working rat hearts were perfused at 37 degrees C with Krebs-Henseleit solution. Following a 20-minute equilibration period, a single bolus of H2O2 (300 micromol/L) was added and the hearts were perfused for an additional 5 min. H2O2 induced a dramatic and progressive reduction in cardiac function. This was accompanied by rapid and significant activation of AMPK, an increase in Thr-172 phosphorylation of AMPK, and an increase in the creatine to phosphocreatine (Cr/PCr) ratio. Addition of pyruvate (5 mmol/L) to the perfusate prevented the H2O2-mediated reduction in cardiac mechanical dysfunction, activation of myocardial AMPK activity, increase in AMPK phosphorylation and the increase in the Cr/PCr ratio. Hearts challenged with H2O2 (300 micromol/L) in presence of either AMPK inhibitor Compound C (10 micromol/L) or its vehicle (dimethyl sulfoxide (DMSO), 0.1%) showed reduced impairment in cardiac mechanical function. Compound C but not its vehicle significantly inhibited myocardial AMPK activity. Thus, H2O2 induces cardiac dysfunction via both AMPK-dependent and independent mechanisms.  相似文献   

10.
Severe left ventricular volume overloading causes myocardial and cellular contractile dysfunction. Whether this is also true for severe right ventricular volume overloading was unknown. We therefore created severe tricuspid regurgitation percutaneously in seven dogs and then observed them for 3.5-4.0 yr. All five surviving operated dogs had severe tricuspid regurgitation and right heart failure, including massive ascites, but they did not have left heart failure. Right ventricular cardiocytes were isolated from these and from normal dogs, and sarcomere mechanics were assessed via laser diffraction. Right ventricular cardiocytes from the tricuspid regurgitation dogs were 20% longer than control cells, but neither the extent (0.171 +/- 0.005 microm) nor the velocity (2.92 +/- 0.12 microm/s) of sarcomere shortening differed from controls (0.179 +/- 0.005 microm and 3.09 +/- 0.11 microm/s, respectively). Thus, despite massive tricuspid regurgitation causing overt right heart failure, intrinsic right ventricular contractile function was normal. This finding for the severely volume-overloaded right ventricle stands in distinct contrast to our finding for the left ventricle severely volume overloaded by mitral regurgitation, wherein intrinsic contractile function is depressed.  相似文献   

11.
This study examined whether increased superoxide (O(2)(-).) production contributes to coronary endothelial dysfunction and decreased coronary blood flow (CBF) in congestive heart failure (CHF). To test this hypothesis, the effects of the low-molecular-weight SOD mimetic M40401 on CBF and myocardial oxygen consumption (MVo(2)) were examined in dogs during normal conditions and after CHF was produced by 4 wk of rapid ventricular pacing. The development of CHF was associated with decreases of left ventricular (LV) systolic pressure, maximum first derivative of LV pressure, MVo(2), and CBF at rest and during treadmill exercise as well as endothelial dysfunction with impaired vasodilation in response to intracoronary acetylcholine. M40401 increased CBF (18 +/- 5%, P < 0.01) and MVo(2) (14 +/- 6%, P < 0.01) in CHF dogs and almost totally reversed the impaired CBF response to acetylcholine. M40401 had no effect on acetylcholine-induced coronary vasodilation, CBF, or MVo(2) in normal dogs. Western blot analysis demonstrated that extracellular SOD (EC-SOD) was significantly decreased in CHF hearts, whereas mitochondrial Mn-containing SOD was increased. Cytosolic Cu/Zn-containing SOD was unchanged. Both increased O(2)(-). production and decreased vascular O(2)(-). scavenging ability by EC-SOD could have contributed to endothelial dysfunction in the failing hearts.  相似文献   

12.
Acetaminophen, the active ingredient in Tylenol, is a widely used drug that is well known for its analgesic and antipyretic properties. Acetaminophen is a commonly used alternative to nonsteroidal anti-inflammatory drugs, which have recently been demonstrated to increase mortality after acute myocardial infarction (AMI). The safety and potential cardioprotective properties of acetaminophen in the setting of AMI have recently been investigated; however, the results from these studies have been inconclusive. Using both large (ovine) and small (rabbit) collateral-deficient animal models, we studied the effects of acetaminophen in the setting of reperfused AMI. In both species we studied the effects of acetaminophen on myocardial salvage and ventricular function. Additionally, we studied the effects of acetaminophen on myocardial perfusion in sheep and on myocyte apoptosis in rabbits. Sixteen sheep and twenty-two rabbits were divided into two groups and administered acetaminophen or a vehicle before undergoing ischemia and reperfusion. The ischemic period was 60 min in sheep and 30 min in rabbits. All animals were reperfused for 3 h. There were no significant differences observed in myocardial perfusion, myocyte apoptosis, or infarct size in acetaminophen-treated animals. Acetaminophen increased cardiac output and mean arterial pressure before ischemia in sheep but had no effect on any other hemodynamic parameter. In rabbits, no effect on cardiac output or blood pressure was detected. These results support the role of acetaminophen as a safe drug in the postmyocardial infarction setting; however, no significant cardioprotective effect of the drug could be demonstrated.  相似文献   

13.
Lv PP  Fan Y  Chen WL  Shen YL  Zhu L  Wang LL  Chen YY 《生理学报》2007,59(5):674-680
本文旨在研究冠状动脉内皮和NO在选择性环加氧酶2(cyclooxygenase2,COX-2)抑制剂尼美舒利(nimesulide)对抗心肌氧化损伤中的作用。离体大鼠心脏行Langendorff灌流,给予H2O2(140Bmol/L)观察心脏收缩功能。用U-46619灌流心脏,使冠状动脉预收缩后,观察冠状动脉对内皮依赖性舒张因子5-HT和内皮非依赖性舒张因子硝普钠(sodiumnitroprusside,SNP)的反应。结果显示:(1)与空白对照组(100%)相比,H202灌流20min后,左心室发展压[left ventriculardevelo pedpressure,LVDP,(54.8±4.0)%],和心室内压最大变化速率【±dp/dtmax(50.8±3.1)%和(46.2±2.9)%]明显降低。H2O2灌流前尼美舒利(5μmol/L)预处理10min,能够显著抑制H2O2引起的LVDP和μdp/dtmax下降[(79.9±2.8)%,(80.3±2.6)%和(81.4±2.6)%,P〈0.0l]。(2)与空白对照组相比,H2O2灌流后,5-HT和SNP引起内皮依赖性和内皮非依赖性血管舒张功能均明显下降;而尼美舒利预处理10min能明显对抗内皮依赖性血管舒张功能的下降[(-22.2±4.2)%vsH2O2组(-6.0±2.5)%,P〈0.0l],但对其内皮非依赖性血管舒张功能的下降没有明显作用[(-2.0±1.8)%vsH202组(-7.0±3.5)%,P〉0.05]。(3)一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME能够部分取消尼美舒利预处理对H20,应激心脏心功能指标的改善作用ILVDP和±dp/dtmax分别为(60.2±2.1)%,(63.9±2.4)%和(63.1±2.9)%,P〈0.01]。同时尼美舒利预处理10min能使H202应激心肌NO含量增加[(2.63±0.40)vs(1.36±0.23)nmol/gprotein,P〈0.051,而L-NAME抑制此作用。(4)选择性COX-1抑制剂吡罗昔康(piroxicam)预处理不能抑制H202引起的LVDP和±dp/dtmax下降,但促进左心室舒张末压(1eftventricular end diastolicpressure,LVEDP)升高;吡罗昔康对H202引起的内皮依赖性和内皮非依赖性血管舒张功能下降无显著作用。以上结果提示,选择性COX-2抑制剂尼美舒利能够对抗大鼠离体心肌氧化应激损伤,其机制可能是通过改善内皮依赖性血管舒张功能和增加心肌NO含量起作用。  相似文献   

14.
Postischemic myocardial contractile dysfunction is in part mediated by the burst of reactive oxygen species (ROS), which occurs with the reintroduction of oxygen. We hypothesized that tissue oxygen tension modulates this ROS burst at reperfusion. After 20 min of global ischemia, isolated rat hearts were reperfused with temperature-controlled (37.4 degrees C) Krebs-Henseleit buffer saturated with one of three different O2 concentrations (95, 20, or 2%) for the first 5 min of reperfusion and then changed to 95% O2. Additional hearts were loaded with 1) allopurinol (1 mM), a xanthine oxidase inhibitor, 2) diphenyleneiodonium (DPI; 1 microM), an NAD(P)H oxidase inhibitor, or 3) Tiron (10 mM), a superoxide scavenger, and were then reperfused with either 95 or 2% O2 for the first 5 min. ROS production and tissue oxygen tension were quantitated using electron paramagnetic resonance spectroscopy. Tissue oxygen tension was significantly higher in the 95% O2 group. However, the largest radical burst occurred in the 2% O2 reperfusion group (P < 0.001). Recovery of left ventricular (LV) contractile function and aconitase activity during reperfusion were inversely related to the burst of radical production and were significantly higher in hearts initially reperfused with 95% O2 (P < 0.001). Allopurinol, DPI, and Tiron reduced the burst of radical formation in the 2% O2 reperfusion groups (P < 0.05). Hypoxic reperfusion generates an increased ROS burst originating from multiple pathways. Recovery of LV function during reperfusion is inversely related to this oxygen radical burst, highlighting the importance of myocardial oxygen tension during initial reperfusion.  相似文献   

15.
Ischemia-reperfusion-induced Ca(2+) overload results in activation of calpain-1 in the heart. Calpain-dependent proteolysis contributes to myocardial dysfunction and cell death. Previously, preischemic treatment with low doses of H(2)O(2) was shown to improve postischemic function and reduce myocardial infarct size. Our aim was to determine the mechanism by which H(2)O(2) protects the heart. We hypothesized that H(2)O(2) causes the activation of p38 MAPK which initiates translocation of heat shock protein 25/27 (HSP25/27) to the myofilament Z disk. We further hypothesized that HSP25/27 shields structural proteins, particularly desmin, from calpain-induced proteolysis. To address this hypothesis, we first determined that an ischemia-reperfusion-induced decrease in desmin content could be blocked by H(2)O(2) pretreatment of hearts from rats. We next determined that ventricular myocytes that underwent Ca(2+) overload also demonstrated a calpain-dependent disruption of desmin that could be reduced by H(2)O(2)/p38 MAPK activation. Furthermore, myocytes acutely treated with H(2)O(2) exhibited a decrease in cleavage of desmin upon exposure to exogenous calpain-1 compared with myocytes not pretreated with H(2)O(2). The H(2)O(2)-induced attenuation of desmin degradation by calpain-1 was blocked by inhibition of p38 MAPK. In a final series of experiments, we demonstrated that cardiac myofilaments exposed to recombinant phosphorylated HSP27, but not nonphosphorylated HSP27, had a significant reduction in the calpain-induced degradation of desmin compared with non-HSP27-treated myofilaments. These findings are consistent with the hypothesis that H(2)O(2)-induced activation of p38 MAPK and subsequent HSP25/27 translocation attenuates desmin degradation brought about by calpain-1 activation in ischemia-reperfused hearts.  相似文献   

16.
Reperfusion of the ischemic myocardium leads to a burst of reactive O(2) species (ROS), which is a primary determinant of postischemic myocardial dysfunction. We tested the hypothesis that early O(2) delivery and the cellular redox state modulate the initial myocardial ROS production at reperfusion. Isolated buffer-perfused rat hearts were loaded with the fluorophores dihydrofluorescein or Amplex red to detect intracellular and extracellular ROS formation using surface fluorometry at the left ventricular wall. Hearts were made globally ischemic for 20 min and then reperfused with either 95% or 20% O(2)-saturated perfusate. The same protocol was repeated in hearts loaded with dihydrofluorescein and perfused with either 20 or 5 mM glucose-buffered solution to determine relative changes in NADH and FAD. Myocardial O(2) delivery during the first 5 min of reperfusion was 84.7 +/- 4.2 ml O(2)/min with 20% O(2)-saturated buffer and 354.4 +/- 22.8 ml O(2)/min with 95% O(2) (n = 8/group, P < 0.001). The fluorescein signal (intracellular ROS) was significantly increased in hearts reperfused with 95% O(2) compared with 20% O(2). However, the resorufin signal (extracellular ROS) was significantly increased with 20% O(2) compared with 95% O(2) during reperfusion. Perfusion of hearts with 20 mM glucose reduced the (.)NADH during ischemia (P < 0.001) and the (.)ROS at reperfusion (P < 0.001) compared with 5.5 mM-perfused glucose hearts. In conclusion, initial O(2) delivery to the ischemic myocardium modulates a compartment-specific ROS response at reperfusion such that high O(2) delivery promotes intracellular ROS and low O(2) delivery promotes extracellular ROS. The redox state that develops during ischemia appears to be an important precursor for reperfusion ROS production.  相似文献   

17.
Previously we reported that the beneficial effects of beta-adrenergic blockade in chronic mitral regurgitation (MR) were in part due to induction of bradycardia, which obviously affects myocardial energy requirements. From this observation we hypothesized that part of the pathophysiology of MR may involve faulty energy substrate utilization, which in turn might lead to potentially harmful lipid accumulation as observed in other models of heart failure. To explore this hypothesis, we measured triglyceride accumulation in the myocardia of dogs with chronic MR and then attempted to enhance myocardial metabolism by chronic administration of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist rosiglitazone. Cardiac tissues were obtained from three groups of dogs that included control animals, dogs with MR for 3 mo without treatment, and dogs with MR for 6 mo that were treated with rosiglitazone (8 mg/day) for the last 3 mo of observation. Hemodynamics and contractile function (end-systolic stress-strain relationship, as measured by K index) were assessed at baseline, 3 mo of MR, and 6 mo of MR (3 mo of the treatment). Lipid accumulation in MR (as indicated by oil red O staining score and TLC analysis) was marked and showed an inverse correlation with the left ventricular (LV) contractility. LV contractility was significantly restored after PPAR therapy (K index: therapy, 3.01 +/- 0.11*; 3 mo MR, 2.12 +/- 0.34; baseline, 4.01 +/- 0.29; ANOVA, P = 0.038; *P < 0.05 vs. 3 mo of MR). At the same time, therapy resulted in a marked reduction of intramyocyte lipid. We conclude that 1) chronic MR leads to intramyocyte myocardial lipid accumulation and contractile dysfunction, and 2) administration of the PPAR-gamma agonist rosiglitazone ameliorates MR-induced LV dysfunction accompanied by a decline in lipid content.  相似文献   

18.
We have previously demonstrated the participation of reactive oxygen species (ROS) in the positive inotropic effect of a physiological concentration of Angiotensin II (Ang II, 1 nM). The objective of the present work was to evaluate the role and source of ROS generation in the positive inotropic effect produced by an equipotent concentration of endothelin-1 (ET-1, 0.4 nM). Isolated cat ventricular myocytes were used to measure sarcomere shortening with a video-camera, superoxide anion (()O(2)(-)) with chemiluminescence, and ROS production and intracellular pH (pH(i)) with epifluorescence. The ET-1-induced positive inotropic effect (40.4+/-3.1%, n=10, p<0.05) was associated to an increase in ROS production (105+/-29 fluorescence units above control, n=6, p<0.05). ET-1 also induced an increase in ()O(2)(-) production that was inhibited by the NADPH oxidase blocker, apocynin, and by the blockers of mitochondrial ATP-sensitive K(+) channels (mK(ATP)), glibenclamide and 5 hydroxydecanoic acid. The ET-1-induced positive inotropic effect was inhibited by apocynin (0.3 mM; 6.3+/-6.6%, n=13), glibenclamide (50 muM; 8.8+/-3.5%, n=6), 5 hydroxydecanoic acid (500 muM; 14.1+/-8.1, n=9), and by scavenging ROS with MPG (2 mM; 0.92+/-5.6%, n=8). ET-1 enhanced proton efflux (J(H)) carried by the Na(+)/H(+) exchanger (NHE) after an acid load, effect that was blocked by MPG. Consistently, the ET-induced positive inotropic effect was also inhibited by the NHE selective blocker HOE642 (5 muM; 9.37+/-6.07%, n=7). The data show that the effect of a concentration of ET-1 that induces an increase in contractility of about 40% is totally mediated by an intracellular pathway triggered by mitochondrial ROS formation and stimulation of the NHE.  相似文献   

19.
Heart failure is associated with increased myocardial expression of TNF-alpha. However, the role of TNF-alpha in the development of heart failure is not fully understood. In the present study, we investigated the contribution of TNF-alpha to myocardial mitochondrial dysfunction, oxidative stress, and apoptosis in a unique dog model of heart failure characterized by an activation of all of these pathological processes. Male mongrel dogs were randomly assigned (n = 10 each) to 1) normal controls; 2) chronic pacing (250 beats/min for 4 wk) with concomitant administration of etanercept, a soluble p75 TNF receptor fusion protein, 0.5 mg/kg subcutaneously twice weekly; 3) chronic pacing with administration of saline vehicle. Mitochondrial function was assessed by left ventricular (LV) tissue mitochondrial respiratory enzyme activities. Oxidative stress was assessed with aldehyde levels, and apoptosis was quantified by photometric enzyme immunoassay for cytoplasmic histone-associated DNA fragments and terminal deoxynucleotide transferase-mediated nick-end labeling (TUNEL) assays. LV activity levels of mitochondrial respiratory chain enzyme complex III and V were reduced in the saline-treated dogs and restored either partially (complex III) or completely (complex V) in the etanercept-treated dogs. Aldehyde levels, DNA fragments, and TUNEL-positive cells were increased in the saline-treated dogs and normalized in etanercept-treated dogs. These changes were accompanied by an attenuation of LV dilatation and partial restoration of ejection fraction. Our data demonstrate that TNF-alpha contributes to progressive LV dysfunction in pacing-induced heart failure, mediated in part by a local impairment in mitochondrial function and increase in oxidative stress and myocyte apoptosis.  相似文献   

20.
Magnolol, an active component extracted from Magnolia officinalis, has been reported to have protective effect on ischemia and reperfusion (I/R)-induced injury in experimental animals. The aim of the present investigation was to further evaluate the mechanism(s) by which magnolol reduces I/R-induced myocardial injury in rats in vivo. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 24 h (for infarct size and cardiac function analysis). In some experiments, reperfusion was limited to 1 h or 6 h for analysis of biochemical and molecular events. Magnolol and DMSO solution (vehicle) were injected intra-peritoneally 1 h prior to I/R insult. The infarct size was measured by TTC technique and heart function was monitored by Millar Catheter. Apoptosis related events such as p-ERK, p-Bad, Bcl-xl and cytochrome c expression were evaluated by Western blot analysis and myocardial caspase-3 activity was also measured. Magnolol (10 mg/kg) reduced infarct size by 50% (P < 0.01 versus vehicle), and also improved I/R-induced myocardial dysfunction. Left ventricular systolic pressure and positive and negative maximal values of the first derivative of left ventricular pressure (dP/dt) were significantly improved in magnolol-treated rats. Magnolol increased the expression of phosphor ERK and Bad which resulted in inhibition of myocardial apoptosis as evidenced by TUNEL analysis and DNA laddering experiments. Application of PD 98059, a selective MEK1/2 inhibitor, strongly antagonized the effect of magnolol. Taken together, we concluded that magnolol inhibits apoptosis through enhancing the activation of ERK1/2 and modulation of the Bcl-xl proteins which brings about reduction of infarct size and improvement of cardiac function in I/R-induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号