首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin. In this preparation, insulin rapidly stimulated autophosphorylation of the receptor on tyrosine residues only and high performance liquid chromatography analysis of the beta-subunit digested with trypsin revealed one minor and two major phosphopeptides. The elution position of the minor peptide corresponded to that of the major phosphotyrosine-containing peptide obtained from the beta-subunit of the insulin-stimulated receptor labeled in vivo. In contrast, the elution position of one of the major phosphopeptides that occurred during in vitro phosphorylation corresponded to the minor phosphotyrosine-containing peptide phosphorylated in vivo. The other major in vitro phosphotyrosine-containing peptide was not detected in vivo. Our results indicate that: tyrosine phosphorylation of the insulin receptor occurs rapidly following insulin binding to intact cells; the level of tyrosine phosphorylation remains constant for up to 1 h; the specificity of the receptor kinase or accessibility of the phosphorylation sites are different in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have studied the reversibility of insulin receptor phosphorylation to establish the relation between this autophosphorylation reaction and the initiation of insulin action and between dephosphorylation and the termination of insulin effects in cells. In cultured Fao hepatoma cells labeled with 32PO4(3-), insulin increased 5-fold the phosphorylation of the beta-subunit of the insulin receptor at serine, threonine, and tyrosine residues. Addition of anti-insulin antiserum to cells incubated with insulin caused dissociation of insulin from the receptor and concurrent dephosphorylation of the beta-subunit. 32PO4(3-) associated with the insulin-stimulated receptor could be decreased by the addition of sodium phosphate to the medium but with a slower time course. Insulin stimulated phosphorylation of insulin receptor purified partially on immobilized wheat germ agglutinin. This reaction utilized [gamma-32P] ATP and occurred exclusively on tyrosine residues. Addition of unlabeled ATP caused a decrease in the amount of PO4(3-) associated with the receptor. Insulin-stimulated phosphorylation was also observed if the receptors were further purified by immunoprecipitation with anti-insulin receptor antibody prior to the phosphorylation reaction; however, addition of unlabeled ATP to this system did not chase the labeled 32PO4(3-) from the beta-subunit. These data are consistent with the notion that phosphorylation and dephosphorylation of the insulin receptor parallel the onset and termination of insulin action. Phosphatase activity involved in the dephosphorylation of the insulin receptor appears to be a glycoprotein because it was retained after partial purification of the receptor on wheat germ agglutinin-agarose; however, this phosphatase activity is distinct from the insulin receptor because it was not retained after immunoprecipitation of the receptor with anti-insulin receptor antibodies.  相似文献   

3.
Insulin stimulates hexose transport and phosphorylation of the insulin receptor in monolayer cultures of intact 3T3-L1 adipocytes. To assess the phosphorylation state of the receptor in situ, cells were equilibrated with [32P]orthophosphate and then disrupted under denaturing conditions which preserved the phosphorylation state of the receptor established in the cell. The insulin receptor, isolated by lectin adsorption and two-dimensional nonreducing/reducing polyacrylamide gel electrophoresis, occurred as a single oligomeric species with an apparent alpha 2 beta 2 subunit composition. This oligomeric structure was not altered by treating cells with insulin. Only the beta-subunit of the receptor was phosphorylated; [32P]phosphoserine and [32P] phosphotyrosine were both identified in the beta-subunit from cells in the unstimulated state, but only [32P] phosphotyrosine increased in cells stimulated with insulin. Neither insulin-like growth factors I nor II stimulated insulin receptor beta-subunit phosphorylation, although both activated hexose transport. Upon the addition of insulin, [32P]orthophosphate incorporated into the beta-subunit increased 4.5-fold (7-fold with respect to [32P]tyrosine) and was complete within 1 min (t1/2 = 8 s). Following the removal of insulin from the monolayers, [32P]beta-subunit fell to the basal level (t1/2 = 2.5 min); there was no lag phase before either transition. The tyrosine protein kinase activity, measured in vitro with a model substrate, was higher with immunoaffinity-purified insulin receptor from insulin-stimulated cells than from cells in the basal state. Hexose transport rate, measured using 3-O-[methyl-14C]glucose, was half-maximally stimulated at 2 nM insulin. A 1-min latency period followed insulin addition, after which a 7-fold increase in the steady-state rate of hexose uptake was achieved within 5 min. Upon the removal of insulin, hexose transport continued at the stimulated steady-state rate for 2.5 min and then declined to the basal rate with a half-time of 8 min. These kinetic experiments in situ and protein kinase activity measurements in vitro support the hypothesis that beta-subunit phosphorylation is an intermediate step linking insulin binding to the increased glucose transport rate.  相似文献   

4.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.  相似文献   

5.
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.  相似文献   

6.
The insulin receptor purified from human placenta by sequential affinity chromatography on wheat germ agglutinin- and insulin-Sepharose to near homogeneity retained tyrosine-specific protein kinase activity. This purified insulin receptor kinase specifically catalyzed the incorporation of 32P from [gamma-32P]ATP into not only the beta-subunit of the insulin receptor but also histone H2B, a synthetic peptide which is sequentially similar to the site of tyrosine phosphorylation in pp60src (a gene product of the Rous sarcoma virus) and antibodies to pp60src present in the sera obtained from three rabbits bearing tumors induced by the Rous sarcoma virus. In each case, phosphorylation occurred exclusively on tyrosine residues. Insulin stimulated phosphorylation of these substrates 3- to 5-fold. Kinetic analysis using the synthetic peptide indicated that insulin acted by increasing the Vmax of peptide phosphorylation from about 3.1 to 9.5 nmol X mg-1 of protein X min-1, whereas the value of the Km for the peptide, about 1.5 mM, was not significantly changed. This kinase acted weakly on casein, alpha-S-casein, actin, and a tyrosine-containing peptide analogue of a serine-containing peptide used commonly as a substrate for the cyclic AMP-dependent protein kinases. These data show that the insulin receptor kinase displays specificity toward exogenous substrates similar to the substrate specificity observed for pp60src and the protein kinase activity associated with the receptor for epidermal growth factor. The data suggest that the catalytic sites of these three tyrosine kinases are similar and that insulin activates its receptor kinase by increasing the Vmax.  相似文献   

7.
The effects of insulin and anti-(insulin receptor) monoclonal antibodies on tyrosine phosphorylation were investigated in fibroblasts transfected with human insulin receptor cDNA (NIH 3T3HIR3.5 cells) using anti-phosphotyrosine immunoblotting. Insulin increased levels of tyrosine phosphorylation in two major proteins of molecular mass 97 kDa (pp97, assumed to be the insulin receptor beta-subunit) and 185 kDa (pp185). Insulin-mimetic anti-receptor antibodies also stimulated tyrosine phosphorylation of both pp97 and pp185. The observation of antibody-stimulated pp97 phosphorylation, as detected by immunoblotting, is in contrast with previous data which failed to show receptor autophosphorylation in NIH 3T3HIR3.5 cells labelled with [32P]P1. The effect of insulin on pp97 was maximal within 1 min, but the response to antibody was apparent only after a lag of 1-2 min and rose steadily over 20 min. The absolute level of antibody-stimulated phosphorylation of both pp97 and pp185 after 20 min was only about 20% of the maximum level induced by equivalent concentrations of insulin, even at concentrations of antibody sufficient for full occupancy of receptors. Another insulin-mimetic agent, wheat-germ agglutinin, stimulated receptor autophosphorylation with kinetics similar to those produced by the antibody. It is suggested that the relatively slow responses to both agents may be a function of the dependence on receptor cross-linking. These data are consistent with a role for the insulin receptor tyrosine kinase activity in the mechanism of action of insulin-mimetic anti-receptor antibodies.  相似文献   

8.
An endogenous substrate for the insulin receptor-associated tyrosine kinase   总被引:16,自引:0,他引:16  
Insulin binding to its receptor stimulates a tyrosine-specific protein kinase. This enzyme phosphorylates the insulin receptor, as well as a variety of exogenous substrates in vitro. In the present studies, we have identified an endogenous substrate for the insulin receptor-associated kinase. We studied insulin-stimulated protein phosphorylation in partially purified insulin receptor preparations from the livers of dexamethasone-treated rats. In this cell-free system, insulin stimulated the phosphorylation of its own receptor as well as of a phosphoprotein of apparent Mr = 120,000 (termed pp120). pp120 was not immunoprecipitated by three anti-receptor antisera, nor was the receptor immunoprecipitated by antisera raised against pp120, suggesting that pp120 is not antigenically related or tightly bound to the insulin receptor. Dose-response curves for receptor and pp120 phosphorylation stimulated by pork insulin were essentially identical, and showed the appropriate specificity (insulin much greater than proinsulin) for a receptor-mediated event. Phosphoamino acid analysis revealed that insulin stimulated the incorporation of 32P predominantly into tyrosine residues of pp120. Casein, an artificial substrate for the insulin receptor kinase, competed with pp120 for insulin-stimulated phosphorylation. Phosphorylation of pp120 was rapid (half-maximal effect within 2 min at 24 degrees C) and, like receptor phosphorylation, was supported with Mn2+ or Mg2+ as divalent cation and ATP as the phosphate donor. While receptor autophosphorylation and artificial substrate phosphorylation were not altered by prior treatment of the rats with dexamethasone, insulin-stimulated pp120 phosphorylation was enhanced in preparations derived from dexamethasone-treated rats, suggesting an alteration of pp120, not the receptor, as a result of dexamethasone-treatment. Further studies of this newly identified endogenous substrate may help clarify the physiologic role of the insulin receptor-associated kinase.  相似文献   

9.
Phosphorylation and dephosphorylation of the insulin receptor were examined in permeabilized rat adipocytes using pulse-chase techniques. Maximum insulin-dependent phosphorylation during a 2-min labeling period with 75 microM [gamma-32P]ATP was attained at 10(-6)-10(-7) M insulin with a small effect at 10(-9) M. The reaction utilized either Mn2+ or Mg2+, but insulin-dependent phosphorylation was 11-fold greater with Mn2+. In the absence of insulin, phosphorylation was 6-fold greater with Mn2+. With either cation, insulin (10(-7) M) was a potent stimulator of receptor phosphorylation with 5- and 8-fold increases above control levels in the presence of Mg2+ and Mn2+, respectively. Phosphorylation of the insulin receptor reached an apparent steady state within 30 s at 37 degrees C under all conditions. By phosphoamino acid analysis, all insulin- and Mn2+-dependent phosphorylation in the 95-kDa subunit of the insulin receptor was phosphotyrosine. A small amount of phosphoserine was detected, but it was not affected by either insulin or Mn2+. Dephosphorylation of the insulin receptor was examined by "chasing" labeled ATP after 2 min with a 40-fold excess of unlabeled ATP. Maximum dephosphorylation was reached in 2 min under all conditions. Insulin had no effect on the dephosphorylation reaction. The labile fraction of Mn2+-dependent phosphoreceptor dephosphorylated to one-half of its initial level in approximately 21 s at 37 degrees C. Vanadate, a potent phosphotyrosine phosphatase inhibitor, inhibited dephosphorylation of this phosphoreceptor by 25%. When vanadate was present during the 2-min labeling period, phosphorylation of control, and insulin-dependent receptor was increased by 50%. In summary, rapid "in vitro" autophosphorylation of the insulin receptor is coupled to an equally rapid dephosphorylation reaction in permeabilized adipocytes. This suggests that phosphorylation of the insulin receptor is a dynamic, rapidly reversible, insulin-dependent response in target cells and is consistent with it being involved in insulin signal transduction and insulin action.  相似文献   

10.
The insulin receptor is an insulin-activated, tyrosine-specific protein kinase. Previous studies have shown that autophosphorylation of tyrosine residues on the Mr 95,000 is associated with an activation of the protein kinase activity toward exogenous protein substrates. We have employed the highly purified insulin receptor, immobilized on insulin-Sepharose or eluted in an active form, to define the metal/ATP requirements for kinase activation, the relationship of receptor autophosphorylation to activation, and the kinetic properties of the autophosphorylated, activated receptor kinase. Prior incubation of the immobilized receptor with 2 mM ATP, 10 mM Mg (or 10 mM Mn), followed by removal of these reactants, served to abolish the upward curvilinearity in the rate of histone 2b (tyrosine) phosphorylation measured subsequently. This treatment also markedly increased the rate of histone 2b phosphorylation as compared to that observed with the unmodified, immobilized receptor, as estimated under conditions that per se minimized further activation. The extents of maximal activation of receptor histone 2b (tyrosine) kinase obtained on preincubation with MgATP or MnATP are identical; however, the affinity of the receptor for MnATP is approximately 10-fold higher than that for MgATP. The higher affinity of the receptor for MnATP is observed for both autophosphorylation/autoactivation and histone 2b tyrosine kinase activity (Km MnATP approximately 0.01 mM; Km MgATP approximately 0.1 mM). Autophosphorylation/autoactivation per se does not significantly alter the apparent affinity for MeATP (or protein substrate, as previously reported) but increases Vmax. Activation of receptor histone 2b (tyrosine) kinase is due to tyrosine-specific autophosphorylation of the Mr 95,000 (beta) subunit; thus the extent of total 32P incorporation into the beta subunit correlates precisely with the extent of kinase activation, both over time and at a wide variety of Me2+ ATP concentrations. Sequential treatment of the autophosphorylated receptor with elastase and trypsin yields a single, basically charged 32P-peptide, Mr less than 2000. The functional properties of the unphosphorylated and fully phosphorylated receptor were compared after elution from insulin-Sepharose. The insulin binding characteristics of the two forms of the receptor were indistinguishable; the kinase properties differed greatly; whereas the histone 2b activity of the unphosphorylated receptor was low in the basal state, and activated 10-fold by insulin, the fully autophosphorylated receptor exhibits maximal histone 2b kinase in the basal state and is unaffected by insulin addition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   

12.
A permeabilized rat adipocyte model was developed which permitted an examination of: 1) insulin receptor autophosphorylation, 2) phosphorylation of a putative insulin receptor substrate of 160 kDa, pp160, and 3) the dephosphorylation reactions associated with each of these phosphoproteins. Rat adipocytes, preincubated with [32P]orthophosphate for 2 h, were exposed to insulin (10(-7) M) at the time of digitonin permeabilization. Phosphorylation of pp160 and autophosphorylation of the insulin receptor increased as a function of Mn2+ concentration in the media with near maximum responses at 10 mM. Maximum response was at least as large as the intact cell response to 10(-7) M insulin. In contrast, magnesium did not increase phosphorylation of pp160 although an increase in receptor autophosphorylation was observed. Autophosphorylation was preserved at digitonin concentrations of 20-100 micrograms/ml, but pp160 phosphorylation was negligible beyond 40 micrograms/ml. Our previous work demonstrated that the insulin receptor was associated with a phosphotyrosine phosphatase activity in permeabilized adipocytes (Mooney, R., and Anderson, D. (1989) J. Biol. Chem. 264, 6850-6857). The current permeabilized adipocyte model made possible an examination of the effects of phosphotyrosine phosphatase inhibitors, including several divalent metal cations (Zn2+, Co2+, and Ni2+), vanadate, and molybdate on both net phosphorylation of pp160 and autophosphorylation of the insulin receptor. Zn2+ at 100 microM, Ni2+ at 1 mM, and Co2+ at 1 or 5 mM increased insulin-dependent phosphorylation of pp160 at least 5-fold and autophosphorylation 2-fold. At higher concentrations of Zn2+ (1 mM) and Ni2+ (5 mM), however, no increase in phosphorylation of pp160 was observed and autophosphorylation was inhibited. Vanadate (1 mM) and molybdate (100 microM) increased insulin-dependent phosphorylation of pp160 by 3-fold when tested separately and 7-fold in combination. Insulin receptor autophosphorylation was increased 50% by each and 3-fold when the agents were combined. Dephosphorylation of pp160 and the insulin receptor was analyzed directly by permeabilizing prelabeled insulin-treated adipocytes in the presence of EDTA (10 mM). Dephosphorylation of pp160 was especially rapid with a t1/2 of approximately 10 s. The t1/2 for the insulin receptor was 37 s. Zn2+ at 1 mM (a concentration that inhibited the insulin receptor kinase) was a strong inhibitor of dephosphorylation, prolonging the rate of pp160 dephosphorylation more than 12-fold and insulin receptor dephosphorylation 3-fold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

14.
Human insulin receptor isoforms (HIR-A and -B) differ in their alpha-subunit structures which result from alternatively spliced precursor mRNAs. This structural difference causes distinct binding affinities for insulin. To determine the impact of the structural difference on receptor signaling, we characterized the tyrosine kinase activity of HIR-A and HIR-B in vitro and determined the insulin stimulated beta-subunit phosphorylation and tyrosine kinase activation in the intact cell. When 32P incorporation in beta-subunits of equal amounts of isolated HIR-A and HIR-B was measured, an increased 32P incorporation in tyrosine residues of the beta-subunit of HIR-B (2.5-fold) compared to that of HIR-A was found after in vitro insulin stimulation. This was paralleled by an increased rate of phosphorylation (2.0-fold) or poly(GluNa,Tyr 4:1). In vitro analysis of Km values for ATP were similar for HIR-A (Km = 14.3 microM +/- 3.8) and HIR-B (Km = 20.2 microM +/- 8.6), whereas the Vmax of HIR-B was significantly increased (HIR-A Vmax = 5.5 mumol/60 min micrograms-1 +/- 1.4, HIR-B Vmax = 42.5 mumol/60 min micrograms-1 +/- 19.2). HPLC analysis of tryptic beta-subunit phosphopeptides revealed identical patterns, suggesting that the difference in kinase activities is not due to an alteration of the phosphorylation-activation cascade within the beta-subunit. However, when cleavage of the alpha-subunit by short-time trypsinization was used to activate the tyrosine kinase, the differences in 32P incorporation between HIR-A and HIR-B were abolished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   

16.
Incorporation of 32P from [gamma-32P]ATP into tyrosine residues of the insulin-like growth factor (IGF)-II receptor was observed in a Triton X-100-insoluble fraction of rat adipocyte plasma membranes. IGF-II receptor phosphorylation proceeded to a stoichiometry of approximately 0.5 mol of phosphate/IGF-II binding site after 10 min of incubation at 4 degrees C. A Km for ATP of 6 microM was calculated for this phosphorylation reaction. Addition of IGF-II caused an approximately 2-fold increase in tyrosine phosphorylation of the IGF-II receptor in this preparation. In contrast, phosphorylation of angiotensin II by the Triton X-100 washed membranes was not stimulated by IGF-II. Incubation of purified receptor immobilized on IGF-II agarose or of receptor-enriched low density microsomal membranes with [gamma-32P]ATP did not result in appreciable incorporation of [32P]phosphate into the IGF-II receptor nor into exogenous substrates. These data suggest that the IGF-II receptor is not a tyrosine protein kinase capable of autophosphorylation but that it is a substrate for a tyrosine protein kinase endogenous to the adipocyte plasma membrane. The stimulatory effect of IGF-II on the tyrosine phosphorylation of its receptor may be due to a conformational change which converts the receptor to a better substrate for this tyrosine kinase.  相似文献   

17.
Y Hirata  T Suzuki 《Biochemistry》1987,26(25):8189-8195
The properties of protein kinase activity associated with Fc receptor specific for IgG2a (Fc gamma 2aR) of a murine macrophage like cell line, P388D1, were investigated. IgG2a-binding protein isolated from the detergent lysate of P388D1 cells by affinity chromatography on IgG-Sepharose was found to contain four distinct proteins of Mr 50,000, 43,000, 37,000, and 17,000, which could be autophosphorylated upon incubation with [gamma-32P]ATP. The autophosphorylation of Fc gamma 2a receptor complex ceased when exogenous phosphate acceptors (casein or histone) were added in the reaction mixture. Casein was found to be a much better phosphate acceptor than histone in this system, as casein incorporated about 32-fold more 32P than histone did. Phosphorylation of casein catalyzed by Fc gamma 2a receptor complex was dependent on casein concentration (maximum phosphate incorporation being at 0.5 mg/mL), increased with time or temperature, was dependent on the concentration of ATP and Mg2+, and was maximum at pH near 8. Casein phosphorylation was significantly inhibited by a high concentration of Mn2+ (greater than 25 mM) or KCl (greater than 100 mM) or by a small amount of heparin (greater than 10 units/mL) and was enhanced about 2-fold by protamine. Casein kinase activity associated with Fc gamma 2a receptor used ATP as substrate with an apparent Km of 2 microM as well as GTP with an apparent Km of 10 microM. Prior heating (60 degrees C for 15 min) or treatment with protease (trypsin or Pronase) of Fc gamma 2a receptor complex almost totally abolished casein kinase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An affinity purified human insulin receptor preparation was shown to phosphorylate the alpha- and beta-subunits of the guanine nucleotide-regulatory proteins Gi and Go, derived from bovine brain. The presence of insulin stimulated the rate of their phosphorylation some 2-fold. The presence of Gi and Go did not affect the degree of autophosphorylation of the beta-subunit of the insulin receptor. Under conditions known to cause the dissociation of Gi and Go into their constituent subunits then phosphorylation of Gi and Go by the insulin receptor was abolished. The alpha-subunits of Gi and Go could be selectively phosphorylated by the insulin receptor tyrosyl kinase using appropriate concentrations of Mg2+ and GTP-gamma-S.  相似文献   

19.
The insulin receptor of human placenta even after extensive purification is phosphorylated in the presence of [γ-32P]ATP and NaF, and is dephosphorylated again on incubation in NaF-free medium. Insulin stimulates phosphate incorporation into the Mr95 000 subunit probably by activation of the phosphorylation step. Our data suggest that the insulin receptor contains both kinase and phosphatase activities that may control the phosphorylation state of the receptor.  相似文献   

20.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号