首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of an acidic environment on the radiation-induced G2/M arrest and apoptosis using RKO.C human colorectal cancer cells expressing wild-type p53 and RC10.1 cells, a subline of RKO.C cells deficient in p53 as well as p53+/+ MEFs and p53-/- MEFs (mouse embryonic fibroblasts). The cells were irradiated with 4 Gy or 12 Gy of gamma-rays in pH 7.5 medium or pH 6.6 medium. p53 accentuated the progression of cells from radiation-induced G2/M arrest to apoptosis and the pH 6.6 environment suppressed the progression of cells through G2/M-phase to apoptosis after irradiation. Further analysis indicated that the radiation-induced G2/M arrest was due mainly to G2 arrest in both pH 7.5 and pH 6.6. Therefore, it was concluded that p53 enhances, and an acidic environment suppresses, the exit of cells from radiation-induced G2 arrest by altering cyclin B1-Cdc2 kinase activity.  相似文献   

2.
3.
The mismatch repair (MMR) system and p53 protein play a pivotal role in maintaining genomic stability and modulate cell chemosensitivity. Aim of this study was to examine the effects of either MMR-deficiency or p53 inactivation, or both, on cellular responses to bleomycin. The MMR-deficient colon carcinoma cell line HCT116 and its MMR-proficient subline HCT116/3-6, both expressing wild-type p53, were transfected with an expression vector encoding a dominant-negative p53 mutant, or with the empty vector. Four transfected clones, having the following phenotypes, MMR-proficient/p53 wild-type, MMR-proficient/p53 mutant, MMR-deficient/p53 wild-type, MMR-deficient/p53 mutant, were subjected to treatment with bleomycin. Loss of MMR function alone was associated with increased resistance to apoptosis, chromosomal damage and inhibition of colony formation caused by bleomycin. Loss of p53 alone resulted in abrogation of G1 arrest and increased sensitivity to apoptosis and chromosomal damage induced by the drug, but did not affect clonogenic survival after bleomycin treatment. Disabling both p53 and MMR function led to abrogation of G1 arrest and to a moderate impairment of drug-induced apoptosis. Chromosomal damage was reduced in the MMR-deficient/p53 mutant clone with respect to the MMR-proficient/p53 wild-type one, when evaluated 48 h after bleomycin treatment, but was comparable in both clones 96 h after drug exposure. Clonogenic survival of the MMR-deficient/p53 mutant clone was similar to that of the MMR-deficient/p53 wild-type one. The effects of MMR-deficiency on cellular responses to bleomycin were confirmed using the MMR-proficient lymphoblastoid cell line TK6 and its MMR-deficient subline MT1, both expressing wild-type p53. In conclusion, our data show that loss of MMR and p53 function exerts opposite and independent effects on apoptosis and chromosomal damage induced by bleomycin. Moreover, inactivation of MMR confers resistance to the cytotoxic activity of the anticancer agent in cells expressing either wild-type or mutant p53.  相似文献   

4.
Background: MYCN oncogene amplification occurs in 20-25% of neuroblastoma and is associated with a poor prognosis. We previously reported that MYCN amplified (MNA) p53 wild-type neuroblastoma cell lines failed to G1 arrest in response to irradiation, but this could not be attributed to MYCN alone. Hypothesis: Genes co-amplified with MYCN and/or the predominant cell type, neuronal (N) or substrate adherent (S) phenotypes determine the downstream response to DNA damage in neuroblastoma cell lines. Methods: The MYCN amplicons of five MNA and two non-MNA cell line were mapped using 50K Single Nucleotide Polymorphism (SNP) arrays. One MNA (NBL-W) and one non-MNA neuroblastoma cell line (SKNSH) were sub-cloned into N and S-type cells and the p53 pathway investigated after irradiation induced DNA damage. To determine the role of p53 it was knocked down using siRNA. Results: No genes with a potential role in cell cycle regulation were consistently co-amplified in the MNA cell lines studied. High MYCN expressing NBLW-N cells failed to G1 arrest following irradiation and showed impaired induction of p21 and MDM2, whereas low MYCN expressing NBLW-S cells underwent a G1 arrest with induction of p21 and MDM2. Conversely N type cells underwent higher levels of apoptosis than S type cells. Following p53 knockdown in SHSY5Y N-type cells there was a decrease in apoptosis. Conclusions: The downstream response to DNA damage in p53 wild-type neuroblastoma cell lines is p53 dependent, and determined both by the morphological sub-type and MYCN expression.  相似文献   

5.
Methylxantine derivative, caffeine, is known to prevent the p53-dependent apoptosis pathway via inhibition of ATM (ataxia telangiectasia mutated) kinase, which activates p53 by phosphorylation of the Ser-15 residue. In contrast, it has been reported that caffeine induces p53-mediated apoptosis through Bax protein in non-small-cell lung cancer cells. Therefore, the effects of caffeine on cellular growth in malignant cells are controversial. We investigated the effects of caffeine on cell proliferation, cell cycle progression, and induction of apoptosis in NB4 promyelocytic leukemia cells containing wild-type p53. Caffeine suppressed the cellular growth of NB4 cells in a dose- and time-dependent manner. Caffeine induced G(2)/M phase cell cycle arrest in NB4 cells in association with the induction of phosphorylation at the Ser-15 residue of p53 and induction of tyrosine phosphorylation of cdc2. Expression of Bax protein was increased in NB4 cells after treatment with caffeine. Interestingly, the antisense oligonucleotides for p53 significantly reduced p53 expression and caffeine-induced G(2)/M phase cell cycle arrest in NB4 cells. These results suggest that caffeine induces cell cycle arrest and apoptosis in association with activation of p53 by a novel pathway to phosphorylate the Ser-15 residue and induction of phosphorylation of cdc 2 in leukemic cells with normal p53.  相似文献   

6.
We studied the modulating effect of protein tyrosine kinase inhibitors on the response of cells of the human chronic myelogenous leukemia cell line K562 to radiation. The radiosensitivity of the cells was increased by treatment with herbimycin A and decreased by treatment with genistein. This modulating effect of protein tyrosine kinase inhibitors on radiation sensitivity was associated with the alteration of the mode of radiation-induced cell death. After X irradiation, the cells arrested in the G(2) phase of the cell cycle, but these TP53(-/-) cells were unable to sustain cell cycle arrest. This G(2)-phase checkpoint deficit caused cell death. The morphological pattern of cell death was characterized by swelling of the cytoplasmic compartments, cytosolic vacuolation, disruption of the plasma membrane, less evident nuclear condensation, and faint DNA fragmentation, all of which were consistent with oncosis or cytoplasmic apoptosis. The nonreceptor protein tyrosine kinase inhibitor herbimycin A accelerated the induction of typical apoptosis by X irradiation, which was demonstrated by morphological assessments using nuclear staining and electron microscopy as well as oligonucleosomal fragmentation and caspase 3 activity. Herbimycin A is known to be a selective antagonist of the BCR/ABL kinase of Philadelphia chromosome-positive K562 cells; this kinase blocks the induction of apoptosis after X irradiation. Our results showed that the inhibition of protein tyrosine kinase by herbimycin A enhanced radiation-induced apoptosis in K562 cells. This effect was associated with the activation of caspase 3 and rapid abrogation of the G(2)-phase checkpoint with progression out of G(2) into G(1) phase. In contrast, the receptor-type protein tyrosine kinase inhibitor genistein protected K562 cells from all types of radiation-induced cell death through the inhibition of caspase 3 activity and prolonged maintenance of G(2)-phase arrest. Further investigations using this model may give valuable information about the mechanisms of radiation-induced apoptosis and about the radiosensitivity and radioresistance of chronic myelogenous leukemia cells having the Philadelphia chromosome.  相似文献   

7.
Although DNA-damaging agents such as ultraviolet (UV) and X-ray can induce apoptosis, the difference in the apoptotic mechanism is not clearly understood. In the present study, we investigated the effects of these two genotoxic agents on the induction of DNA damage and subsequent apoptotic cell death from the viewpoint of cell cycle regulation by using WiDr cells. Transient G1 arrest was observed after UV exposure, whereas G2 but not G1 arrest was induced after X-ray irradiation. UV-exposure could induce G1 arrest in both mutant-type (mt-p53) and wild-type p53 (wt-p53) cells, but obvious G1 arrest was not observed in the cells lacking in p53 expression. An increase in the DNA fragmentation was observed at S phase in UV-irradiated cells and at G2 phase in X-irradiated cells, respectively. UV-irradiated cells showed an increase production of p53 protein and accumulation of p21 protein. On the contrary, both p53 and p21 proteins remained at a low level in X-irradiated cells. Treatment with aphidicolin, an S phase blocking agent, prolonged cell cycle arrest and reduced the rate of apoptotic cell death in both UV-irradiated and X-irradiated cells. From these results, it is suggested that UV-induced apoptosis occurs mainly at S phase and is regulated by increased production of p53 and p21 proteins, while X-ray-induced apoptosis occurs after G2 blockade and may be independent of p53.  相似文献   

8.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

9.
We have used a lentiviral vector to stably express p53 at a physiological level in p53 knockout HCT116 cells. Cells transduced with wild type p53 responded to genotoxic stress by stabilizing p53 and expressing p53 target genes. The reconstituted cells underwent G(1) arrest or apoptosis appropriately depending on the type of stress, albeit less efficiently than parental wild type cells. Compared with cells expressing exogenous wild type p53, the apoptotic response to 5-fluorouracil (5FU) was >50% reduced in cells expressing S15A or S20A mutant p53, and even more reduced by combined mutation of serines 6, 9, 15, 20, 33, and 37 (N6A). Among a panel of p53 target genes tested by quantitative PCR, the gene showing the largest defect in induction by 5FU was BBC3 (PUMA), which was induced 4-fold by wild type p53 and 2-fold by the N6A mutant. Mutation of N-terminal phosphorylation sites did not prevent p53 stabilization by doxorubicin or 5FU. MDM2 silencing by RNA interference activated p53 target gene expression in normal fibroblasts but not in HCT116 cells, and exogenous p53 could be stabilized in HCT116 knockout cells despite combined mutation of p53 phosphorylation sites and silencing of MDM2 expression. The MDM2 feedback loop is thus defective, and other mechanisms must exist to regulate p53 stability and function in this widely used tumor cell line.  相似文献   

10.
p53 induces both growth arrest and apoptosis in cancer cells. To clarify whether the level of p53 expression determines the response of small cell lung carcinoma (SCLC) cells, we assessed the effect of various p53 levels on a p53-null SCLC cell line, N417, using a tetracycline (Tc)-regulated inducible p53 expression system. Apoptosis was induced in SCLC cells with high p53 expression. Although low levels of p53 induced G1 arrest accompanied by p21 expression, cells with G1 arrest seemed to undergo apoptosis after further cultivation. Expression of exogenous p21 induced G1 arrest but not apoptosis in SCLC cells, suggesting that p53-mediated G1 arrest was induced through p21 expression. Moreover, high level of p53 expression down-regulated Bcl-2 expression in SCLC cells, while Bax was consistently expressed irrespective to the level of p53 expression. These results suggest that p53-mediated apoptosis and G1 arrest depend on level of p53 expression in SCLC cells and that the relative dominancy of Bax to Bcl-2 is involved in the induction of apoptosis by high level of p53 expression.  相似文献   

11.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

12.
The involvement of p53 as a determinant of chemosensitivity or radiosensitivity is not well understood and is complicated by numerous contradictory reports. Here we have addressed this issue using a series of isogenic clones derived from two neuroblastoma cell lines that express wild-type p53 genes, Nub7 and IMR32. Two different mutant p53 transgenes were used in an attempt to disrupt p53 function in the clones. Our findings indicate that the cellular response is dependent on the genotoxic agent used as well as on the specific p53 transgene used. Cellular radiosensitivity showed no association with apoptosis or with the ability of the cells to arrest in G1 after irradiation. An association was observed, however, between gamma-radiation sensitivity and DNA double-strand break rejoining activity.  相似文献   

13.
Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21(WAF1/Cip1) resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3sigma, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3sigma (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.  相似文献   

14.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

15.
MOLT-4 cells undergo apoptosis after X irradiation. A radiosensitive variant, MOLT-4N1, and a radioresistant variant, MOLT-4N2, have been studied with respect to their radiosensitivity and its relationship to the levels of TP53 protein (formerly known as p53). X irradiation induces apoptosis in both cell lines with the following difference: The induction of apoptosis in MOLT-4N2 cells occurred later than in MOLT-4N1 cells as determined by the morphological changes and DNA fragmentation. The levels of cell death measured by the dye exclusion test coincided with the levels of apoptosis in both cell lines, suggesting that radiation-induced cell killing is determined by the induction of apoptosis. Unirradiated MOLT-4N1 cells contained a significantly higher intracellular level of TP53 protein and a much higher level of TP53 mRNA compared to MOLT-4N2 cells. X irradiation led to an accumulation of TP53 protein in both cell lines that was greater in MOLT-4N1 cells. This accumulation of TP53 protein preceded changes in DNA degradation and ladder formation and in nuclear morphology. These results strongly suggest that the radiosensitivity of MOLT-4 cells correlates well with the unirradiated control levels of TP53 mRNA and TP53 protein, and that the quantitative levels of TP53 protein must reach a threshold for the cells to undergo apoptosis.  相似文献   

16.
17.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.  相似文献   

18.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

19.
As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in color-ectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data col-lectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.  相似文献   

20.
Liao CF  Luo SF  Shen TY  Lin CH  Chien JT  Du SY  Jiang MC 《BMB reports》2008,41(3):210-216
CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号