首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
Endothelin-1 (ET-1) is a vasoconstrictor peptide known to be a potent mitogen for glomerular mesangial cells. We have shown that ET-1 stimulates the adaptor protein p66Shc through Rac/Cdc42 guanine nucleotide exchange factor β1Pix. In this study, we demonstrate that ET-1-induced serine phosphorylation of p66Shc is mediated through Gαi3. Pertussis toxin treatment of cells induced a significant decrease in the interaction between β1Pix and ETA-R, and an increase in the binding of Gαi3 and Gβ1 to β1Pix. Activation of heterotrimeric G proteins by AlF4? resulted in an increase of Gαi3 binding to β1Pix, which was significantly disrupted in cells expressing β1Pix dimerization deficient mutant, β1PixΔ (602-611). In cells expressing β1PixΔ (602-611), ET-1-induced p66Shc activation was also significantly decreased. Specific inhibition of EGF receptor by AG1478 blocked ET-1-induced p66Shc activation and the binding of p66Shc and Gαi3 to β1Pix. Inhibition of Erk1/2 blocked p66Shc activation induced by ET-1. Altogether, our results indicate that ET-1 activates p66Shc through EGF receptor transactivation, leading to the activation of Gαi3, β1Pix and Erk1/2.  相似文献   

3.
4.
5.
Endothelin-1 (ET-1) is a vasoconstrictor peptide known to be a potent mitogen for glomerular mesangial cells (GMC). In the current study, it is demonstrated that ET-1 treatment of GMC results in serine phosphorylation of the 66-kDa isoform of the adapter protein Shc (p66(Shc)). ET-1-induced serine phosphorylation of p66(Shc) requires activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling module and is efficiently inhibited by both a MAPK/ERK kinase (MEK)-selective inhibitor and adenovirus-mediated transfer of a dominant interfering MEK1 mutant. Furthermore, adenovirus-mediated transfer of a constitutively active MEK1 mutant was found to markedly increase p66(Shc) serine phosphorylation. Adenoviruses encoding constitutively active mutants of MAPK kinases 3 and 6 (upstream kinases of p38(MAPK)) and 7 (upstream kinase of c-Jun NH(2)-terminal kinase) failed to induce serine phosphorylation of this adaptor protein. Serine phosphorylation of p66(Shc) resulted in its association with the serine binding motif-containing protein 14-3-3. ET-1-induced phosphorylation of a serine encompassed in the 14-3-3 binding motif of p66(Shc) was confirmed in experiments employing anti-phospho-14-3-3 binding motif antibodies. These studies are the first to demonstrate that G protein-coupled receptors stimulate serine phosphorylation of p66(Shc) and the first to report the formation of a signaling complex between p66(Shc) and 14-3-3.  相似文献   

6.
The cyclin-dependent kinase inhibitor p27(kip1) is a putative tumor suppressor for human cancer. The mechanism underlying p27(kip1) deregulation in human cancer is, however, poorly understood. We demonstrate that the serine/threonine kinase Akt regulates cell proliferation in breast cancer cells by preventing p27(kip1)-mediated growth arrest. Threonine 157 (T157), which maps within the nuclear localization signal of p27(kip1), is a predicted Akt-phosphorylation site. Akt-induced T157 phosphorylation causes retention of p27(kip1) in the cytoplasm, precluding p27(kip1)-induced G1 arrest. Conversely, the p27(kip1)-T157A mutant accumulates in cell nuclei and Akt does not affect p27(kip1)-T157A-mediated cell cycle arrest. Lastly, T157-phosphorylated p27(kip1) accumulates in the cytoplasm of primary human breast cancer cells coincident with Akt activation. Thus, cytoplasmic relocalization of p27(kip1), secondary to Akt-mediated phosphorylation, is a novel mechanism whereby the growth inhibitory properties of p27(kip1) are functionally inactivated and the proliferation of breast cancer cells is sustained.  相似文献   

7.
Mice deficient for p66shcA represent an animal model to link oxidative stress and aging. p66shcA is implicated in oxidative stress response and mitogenic signaling. Phosphorylation of p66shcA on Ser36 is critical for its function in oxidative stress response. Here we report the identification of ERK as the kinase phosphorylating p66shcA on Ser36. Activation of ERKs was necessary and sufficient for Ser36 phosphorylation. p66shcA interacted with ERK and was demonstrated to be a substrate for ERK, with Ser36 being the major phosphorylation site. Furthermore, in response to H2O2, inhibition of ERK activation repressed p66shcA-dependent phosphorylation of FOXO3a and the down-regulation of its target gene p27kip1. Down-regulation of p27 might promote cell survival, as p27 played a proapoptotic role in oxidative stress response. As a feedback regulation, Ser36 phosphorylated p66shcA attenuated H2O2-induced ERK activation, whereas p52/46shcA facilitated ERK activation, which required tyrosine phosphorylation of CH1 domain. p66shcA formed a complex with p52/46ShcA, which may provide a platform for efficient signal propagation. Taken together, the data suggest there exists an interplay between ERK and ShcA proteins, which modulates the expression of p27 and cell response to oxidative stress.  相似文献   

8.
The localization of the cyclin-dependent kinase inhibitor p27kip1 is dependent on the phosphorylation of one of three key amino acid residues: S10, T157 and T198. However, it was unclear whether endogenous p27kip1 is phosphorylated at T198 in the living cell. In the present work we describe the generation and characterization of a polyclonal antibody able to recognize recombinant, transfected as well as endogenous T198-phosphorylated p27kip1. Using this antibody, we demonstrate that: (i) endogenous p27kip1 is phosphorylated at T198 in 4 breast cancer cells lines (MCF7, MDA-MB231, MDA-MB436 and MDA-MB468); (ii) T198 phosphorylation is increased in breast cancer cells compared with normal mammary epithelial cells (HMEC); (iii) T198-phosphorylated p27kip1 is exclusively cytoplasmic; (iv) T198 phosphorylation is dependent on the activity of the PI3K-PKB/Akt pathway, being it drastically reduced by the pharmacological PI3K inhibitor LY294002 or stimulated by the constitutive activation of PKB/Akt. Finally, in primary human breast carcinomas, cytoplasmic accumulation of T198-phosphorylated p27kip1 parallels Akt activation. We conclude that in breast cancer cells p27kip1 is phosphorylated at T198 in a PI3K/Akt dependent manner and that this phosphorylation may contribute to p27kip1 cytoplasmic mislocalization observed in breast cancer.  相似文献   

9.
p21-activated kinase (Pak)-interacting exchange factor (Pix), a Rho family guanine nucleotide exchange factor (GEF), has been shown to co-localize with Pak and form activated Cdc42- and Rac1-driven focal complexes. In this study we have presented evidence that treatment of human mesangial cells (HMC) with endothelin 1 (ET-1) and stimulation of adenylate cyclase with either forskolin or with the cAMP analog 8-Br-cAMP activated the GTP loading of Cdc42. Transient expression of constitutively active G alpha(s) also stimulated Cdc42. In addition, overexpression of beta(1)Pix enhanced ET-1-induced Cdc42 activation, whereas the expression of beta(1)Pix SH3m(W43K), which lacks the ability to bind Pak, and beta(1)PixDHm(L238R/L239S), which lacks GEF activity, decreased ET-1-induced Cdc42 activation. Furthermore, ET-1 stimulation induced beta(1)Pix translocation to focal complexes. Interestingly, pretreatment of HMC with protein kinase A (PKA) inhibitors blocked both Cdc42 activation and beta(1)Pix translocation induced by ET-1, indicating the involvement of the PKA pathway. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assay, we have shown that beta(1)Pix is phosphorylated by PKA. Using purified recombinant beta(1)Pix(wt) and beta(1)Pix mutants, we have identified Ser-516 and Thr-526 as the major phosphorylation sites by PKA. beta(1)Pix(S516A/T526A), in which both phosphorylation sites are replaced by alanine, blocks beta(1)Pix translocation and Cdc42 activation. Our results have provided evidence that stimulation of PKA pathway by ET-1 or cAMP analog results in beta(1)Pix phosphorylation, which in turn controls beta(1)Pix translocation to focal complexes and Cdc42 activation.  相似文献   

10.
M Foschi  S Chari  M J Dunn    A Sorokin 《The EMBO journal》1997,16(21):6439-6451
Endothelin-1 (ET-1) induces cell proliferation and differentiation through multiple G-protein-linked signaling systems, including p21ras activation. Whereas p21ras activation and desensitization by receptor tyrosine kinases have been extensively investigated, the kinetics of p21ras activation induced by engagement of G-protein-coupled receptors remains to be fully elucidated. In the present study we show that ET-1 induces a biphasic activation of p21ras in rat glomerular mesangial cells. The first peak of activation of p21ras, at 2-5 min, is mediated by immediate association of phosphorylated Shc with the guanosine exchange factor Sos1 via the adaptor protein Grb2. This initial activation of p21ras results in activation of the extracellular signal-regulated kinase (ERK) cascade. We demonstrate that ET-1 signaling elicits a negative feedback mechanism, modulating p21ras activity through ERK-dependent Sos1 phosphorylation, findings which were confirmed using an adenovirus MEK construct. Subsequent to p21ras and ERK deactivation, Sos1 reverts to the non-phosphorylated condition, enabling it to bind again to the Grb2/Shc complex, which is stabilized by persistent Shc phosphorylation. However, the resulting secondary activation of p21ras at 30 min does not lead to ERK activation, correlating with intensive, ET-1-induced expression of MAP kinase phosphatase-1, but does result in increased p21ras-associated phosphatidylinositol 3-kinase activity. Our data provide evidence that ET-1-induced biphasic p21ras activation causes sequential stimulation of divergent downstream signaling pathways.  相似文献   

11.
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.  相似文献   

12.
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.  相似文献   

13.
14.
15.
We have shown a novel mechanism of Akt-mediated regulation of the CDK inhibitor p27(kip1). Blockade of HER2/neu in tumor cells inhibits Akt kinase activity and upregulates nuclear levels of the CDK inhibitor (Kip1). Recombinant Akt and Akt precipitated from tumor cells phosphorylated wild-type p27 in vitro. p27 contains an Akt consensus RXRXXT(157)D within its nuclear localization motif. Active (myristoylated) Akt phosphorylated wild-type p27 in vivo but was unable to phosphorylate a T157A-p27 mutant. Wild-type p27 localized in the cytosol and nucleus, whereas T157A-p27 localized exclusively in the nucleus and was resistant to nuclear exclusion by Akt. T157A-p27 was more effective than wild-type p27 in inhibiting cyclin E/CDK2 activity and cell proliferation; these effects were not rescued by active Akt. Expression of Ser(473) phospho Akt in primary human breast cancers statistically correlated with expression of p27 in tumor cytosol. These data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.  相似文献   

16.
Thrombopoietin (TPO), the primary regulator of megakaryocyte (MK) and platelet formation, modulates the activity of multiple signal transduction molecules, including those in the Jak/STAT, p42/p44 MAPK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. We previously demonstrated that PI3K and Akt are necessary for TPO-induced cell cycle progression of primary MK progenitors. However, the molecular events secondary to the activation of PI3K/Akt responsible for MK proliferation remain unclear. In this study we show that FOXO3a and its downstream target p27Kip1 play an important role in TPO-induced proliferation of MK progenitors. We found that TPO down-modulates p27Kip1 expression at both the mRNA and protein levels in primary MKs in a PI3K dependent fashion. UT-7/TPO, a megakaryocytic cell line, stably expressing constitutively active Akt or a dominant-negative form of FOXO3a failed to reduce p27Kip1 expression after TPO stimulation, and fail to induce p27Kip1 expression following TPO withdrawal. Induced expression of an active form of FOXO3a resulted in increased p27Kip1 expression in this cell line. In addition, the number of MKs is significantly increased in bone marrow from Foxo3a-deficient mice. Taken together with the previous observation that p27Kip1-deficient mice also display increased numbers of MK progenitors, our findings indicate that the PI3K/Akt/FOXO3a/p27Kip1 pathway contributes to normal TPO-induced MK proliferation.  相似文献   

17.
18.
19.
Dog thyroid epithelial cells in primary culture constitute a physiologically relevant model of positive control of DNA synthesis initiation and G0-S prereplicative phase progression by cAMP as a second messenger for thyrotropin (thyroid-stimulating hormone [TSH]). As previously shown in this system, the cAMP-dependent mitogenic pathway differs from growth factor cascades as it stimulates the accumulation of p27(kip1) but not cyclins D. Nevertheless, TSH induces the nuclear translocations and assembly of cyclin D3 and cdk4, which are essential in cAMP-dependent mitogenesis. Here we demonstrate that transforming growth factor beta(1) (TGFbeta(1)) selectively inhibits the cAMP-dependent cell cycle in mid-G1 and various cell cycle regulatory events, but it weakly affects the stimulation of DNA synthesis by epidermal growth factor (EGF), hepatocyte growth factor, serum, and phorbol esters. EGF+serum and TSH did not interfere importantly with TGFbeta receptor signaling, because they did not affect the TGFbeta-induced nuclear translocation of Smad 2 and 3. TGFbeta inhibited the phosphorylation of Rb, p107, and p130 induced by TSH, but it weakly affected the phosphorylation state of Rb-related proteins in EGF+serum-treated cells. TGFbeta did not inhibit c-myc expression. In TSH-stimulated cells, TGFbeta did not affect the expression of cyclin D3, cdk4, and p27(kip1), nor the induced formation of cyclin D3-cdk4 complexes, but it prevented the TSH-induced relocalization of p27(kip1) from cdk2 to cyclin D3-cdk4. It prevented the nuclear translocations of cdk4 and cyclin D3 without altering the assembly of cyclin D3-cdk4 complexes probably formed in the cytoplasm, where they were prevented from sequestering nuclear p27(kip1) away from cdk2. This study dissociates the assembly of cyclin D3-cdk4 complexes from their nuclear localization and association with p27(kip1). It provides a new mechanism of regulation of proliferation by TGFbeta, which points out the subcellular location of cyclin D-cdk4 complexes as a crucial factor integrating mitogenic and antimitogenic regulations in an epithelial cell in primary culture.  相似文献   

20.
HIPK2 is a serine/threonine kinase that acts as a coregulator of an increasing number of factors involved in cell survival and proliferation during development and in response to different types of stress. Here we report on a novel target of HIPK2, the cyclin-dependent kinase inhibitor p27(kip1). HIPK2 phosphorylates p27(kip1) in vitro and in vivo at serine 10, an event that accounts for 80% of the total p27(kip1) phosphorylation and plays a crucial role in the stability of the protein. Indeed, HIPK2 depletion by transient or stable RNA interference in tumor cells of different origin was consistently associated with strong reduction of p27(kip1) phosphorylation at serine 10 and of p27(kip1) stability. An initial evaluation of the functional relevance of this HIPK2-mediated regulation of p27(kip1) revealed a contribution to cell motility, rather than to cell proliferation, but only in cells that do not express wild-type p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号