首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Azospirillum brasilense ADP-ribosylation of dinitrogenase reductase (NifH) occurs in response to addition of ammonium to the extracellular medium and is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG). The P(II) proteins GlnB and GlnZ have been implicated in regulation of DraT and DraG by an as yet unknown mechanism. Using pull-down experiments with His-tagged versions of DraT and DraG we have now shown that DraT binds to GlnB, but only to the deuridylylated form, and that DraG binds to both the uridylylated and deuridylylated forms of GlnZ. The demonstration of these specific protein complexes, together with our recent report of the ability of deuridylylated GlnZ to be sequestered to the cell membrane by the ammonia channel protein AmtB, offers new insights into the control of NifH ADP-ribosylation.  相似文献   

2.
Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.  相似文献   

3.
Protein-reversible ADP-ribosylation is emerging as an important post-translational modification used to control enzymatic and protein activity in different biological systems. This modification regulates nitrogenase activity in several nitrogen-fixing bacterial species. ADP-ribosylation is catalyzed by ADP-ribosyltransferases and is reversed by ADP-ribosylhydrolases. The structure of the ADP-ribosylhydrolase that acts on Azospirillum brasilense nitrogenase (dinitrogenase reductase-activating glycohydrolase, DraG) has been solved at a resolution of 2.5 Å. This bacterial member of the ADP-ribosylhydrolase family acts specifically towards a mono-ADP-ribosylated substrate. The protein shows an all-α-helix structure with two magnesium ions located in the active site. Comparison of the DraG structure with orthologues deposited in the Protein Data Bank from Archaea and mammals indicates that the ADP-ribosylhydrolase fold is conserved in all domains of life. Modeling of the binding of the substrate ADP-ribosyl moiety to DraG is in excellent agreement with biochemical data.  相似文献   

4.
In Rhodospirillum rubrum, nitrogenase activity is regulated posttranslationally through the ADP-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT). Several DRAT variants that are altered both in the posttranslational regulation of DRAT activity and in the ability to recognize variants of dinitrogenase reductase have been found. This correlation suggests that these two properties are biochemically connected.  相似文献   

5.
In a number of nitrogen-fixing bacteria, nitrogenase is posttranslationally regulated by reversible ADP-ribosylation of dinitrogenase reductase. The structure of the dinitrogenase reductase from Azotobacter vinelandii is known. In this study, mutant forms of dinitrogenase reductase from A. vinelandii that are affected in various protein activities were tested for their ability to be ADP-ribosylated or to form a complex with dinitrogenase reductase ADP-ribosyltransferase (DRAT) from Rhodospirillum rubrum. R140Q dinitrogenase reductase could not be ADP-ribosylated by DRAT, although it still formed a cross-linkable complex with DRAT. Thus, the Arg 140 residue of dinitrogenase reductase plays a critical role in the ADP-ribosylation reaction. Conformational changes in dinitrogenase reductase induced by an F135Y substitution or by removal of the Fe(4)S(4) cluster resulted in dinitrogenase reductase not being a substrate for ADP-ribosylation. Through cross-linking studies it was also shown that these changes decreased the ability of dinitrogenase reductase to form a cross-linkable complex with DRAT. Substitution of D129E or deletion of Leu 127, which result in altered nucleotide binding regions of these dinitrogenase reductases, did not significantly change the interaction between dinitrogenase reductase and DRAT. Previous results showed that changing Lys 143 to Gln decreased the binding between dinitrogenase reductase and dinitrogenase (L. C. Seefeldt, Protein Sci. 3:2073-2081, 1994); however, this change did not have a substantial effect on the interaction between dinitrogenase reductase and DRAT.  相似文献   

6.
7.
8.
Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation.  相似文献   

9.
The redox state of nitrogenase Fe protein is shown to affect regulation of ADP-ribosylation in Klebsiella pneumoniae strains transformed by plasmids carrying dra genes from Rhodospirillum rubrum. The dra operon encodes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase, enzymes responsible for the reversible inactivation, via ADP-ribosylation, of nitrogenase Fe protein in R. rubrum. In bacteria containing the dra operon in their chromosomes, inactivation occurs in response to energy limitation or nitrogen sufficiency. The dra gene products, expressed at a low level in K. pneumoniae, enable transformants to reversibly ADP-ribosylate nitrogenase Fe protein in response to the presence of fixed nitrogen. The activities of both regulatory enzymes are regulated in vivo as described in R. rubrum. Genetic perturbations of the nitrogenase electron transport chain were found to affect the rate of inactivation of Fe protein. Strains lacking the electron donors to Fe protein (NifF or NifJ) were found to inactivate Fe protein more quickly than a strain with wild-type background. Deletion of nifD, which encodes a subunit of nitrogenase MoFe protein, was found to result in a slower inactivation response. No variation was found in the reactivation responses of these strains. It is concluded that the redox state of the Fe protein contributes to the regulation of the ADP-ribosylation of Fe protein.  相似文献   

10.
Nitrogenase activity in the photosynthetic bacterium Rhodospirillum rubrum is reversibly regulated by ADP-ribosylation of a specific arginine residue of dinitrogenase reductase based on the cellular nitrogen or energy status. In this paper, we have investigated the ability of nicotinamide adenine dinucleotide, NAD (the physiological ADP-ribose donor), and its analogs to support covalent modification of dinitrogenase reductase in vitro. R. rubrum dinitrogenase reductase can be modified by DRAT in the presence of 2 mM NAD, but not with 2 mM nicotinamide mononucleotide (NMN) or nicotinamide adenine dinucleotide phosphate (NADP). We also found that the apo- and the all-ferrous forms of R. rubrum dinitrogenase reductase are not substrates for covalent modification. In contrast, Azotobacter vinelandii dinitrogenase reductase can be modified by the dinitrogenase reductase ADP-ribosyl transferase (DRAT) in vitro in the presence of either 2 mM NAD, NMN or NADP as nucleotide donors. We found that: (1) a simple ribose sugar in the modification site of the A. vinelandii dinitrogenase reductase is sufficient to inactivate the enzyme, (2) phosphoADP-ribose is the modifying unit in the NADP-modified enzyme, and (3) the NMN-modified enzyme carries two ribose-phosphate units in one modification site. This is the first report of NADP- or NMN-dependent modification of a target protein by an ADP-ribosyl transferase.  相似文献   

11.
Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-(32)P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-(14)C]NAD individually upon UV irradiation, but most (14)C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-(14)C]NAD suggested that Arg 101 is not absolutely required for NAD binding.  相似文献   

12.
In the microaerophilic diazotroph Azospirillum brasilense, the addition of fixed nitrogen or a shift to anaerobic conditions leads to a rapid loss of nitrogenase activity due to ADP-ribosylation of dinitrogenase reductase. The product of draT (DRAT) is shown to be necessary for this modification, and the product of draG (DRAG) is shown to be necessary for the removal of the modification upon removal of the stimulus. DRAG and DRAT are themselves subject to posttranslational regulation, and this report identifies features of that regulation. We demonstrate that the activation of DRAT in response to an anaerobic shift is transient but that the duration of DRAT activation in response to added NH4+ varies with the NH4+ concentration. In contrast, DRAG appears to be continuously active under conditions favoring nitrogen fixation. Thus, the activities of DRAG and DRAT are not always coordinately regulated. Finally, our experiments suggest the existence of a temporary period of futile cycling during which DRAT and DRAG are simultaneously adding and removing ADP-ribose from dinitrogenase reductase, immediately following the addition of a negative stimulus.  相似文献   

13.
Although ADP-ribosylation of dinitrogenase reductase plays a significant role in the regulation of nitrogenase activity in Azospirillum brasilense, it is not the only mechanism of that regulation. The replacement of an arginine residue at position 101 in the dinitrogenase reductase eliminated this ADP-ribosylation and revealed another regulatory system. While the constructed mutants had a low nitrogenase activity, NH4+ still partially inhibited their nitrogenase activity, independent of the dinitrogenase reductase ADP-ribosyltransferase/dinitrogenase reductase activating glycohydrolase (DRAT/DRAG) system. These mutated dinitrogenase reductases also were expressed in a Rhodospirillum rubrum strain that lacked its endogenous dinitrogenase reductase, and they supported high nitrogenase activity. These strains neither lost nitrogenase activity nor modified dinitrogenase reductase in response to darkness and NH4+, suggesting that the ADP-ribosylation of dinitrogenase reductase is probably the only mechanism for posttranslational regulation of nitrogenase activity in R. rubrum under these conditions.  相似文献   

14.
In the photosynthetic bacterium Rhodospirillum rubrum nitrogenase activity is regulated by reversible ADP-ribosylation of dinitrogenase reductase in response to external so called "switch-off" effectors. Activation of the modified, inactive form is catalyzed by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the ADP-ribose moiety. This study addresses the signal transduction between external effectors and DRAG. R. rubrum, wild-type and P(II) mutant strains, were studied with respect to DRAG localization. We conclude that GlnJ clearly has an effect on the association of DRAG to the membrane in agreement with the effect on regulation of nitrogenase activity. Furthermore, we have generated a R. rubrum mutant lacking the putative ammonium transporter AmtB1 which was shown not to respond to "switch-off" effectors; no loss of nitrogenase activity and no ADP-ribosylation. Interestingly, DRAG was mainly localized to the cytosol in this mutant. Overall the results support our model in which association to the membrane is part of the mechanism regulating DRAG activity.  相似文献   

15.
Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacteriumRhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) fromR. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase inR. rubrum andRhizobium meliloti and undefined proteins inStreptomyces griseus andPseudomonas maltophila.  相似文献   

16.
17.
The mechanism for "NH4+ switch-off/on" of nitrogenase activity in Azospirillum brasilense and A. lipoferum was investigated. A correlation was established between the in vivo regulation of nitrogenase activity by NH4Cl or glutamine and the reversible covalent modification of dinitrogenase reductase. Dinitrogenase reductase ADP-ribosyltransferase (DRAT) activity was detected in extracts of A. brasilense with NAD as the donor molecule. Dinitrogenase reductase-activating glycohydrolase (DRAG) activity was present in extracts of both A. brasilense and A. lipoferum. The DRAG activity in A. lipoferum was membrane associated, and it catalyzed the activation of inactive nitrogenase (by covalent modification of dinitrogenase reductase) from both A. lipoferum and Rhodospirillum rubrum. A region homologous to R. rubrum draT and draG was identified in the genomic DNA of A. brasilense as a 12-kilobase EcoRI fragment and in A. lipoferum as a 7-kilobase EcoRI fragment. It is concluded that a posttranslational regulatory system for nitrogenase activity is present in A. brasilense and A. lipoferum and that it operates via ADP-ribosylation of dinitrogenase reductase as it does in R. rubrum.  相似文献   

18.
H A Fu  H J Wirt  R H Burris  G P Roberts 《Gene》1989,85(1):153-160
The function of the cloned draT gene of Rhodospirillum rubrum was studied by placing it under the control of the tac promoter in the vector, pKK223-3. After induction with isopropyl-beta-D-thiogalactopyranoside, dinitrogenase reductase ADP-ribosyltransferase (DRAT) activity was detected in crude extracts of the heterologous hosts Escherichia coli and Klebsiella pneumoniae. In addition, the expression of draT produced a Nif- phenotype in the otherwise wild-type K. pneumoniae strains, the result of the ADP-ribosylation of accumulated dinitrogenase reductase (DR). DR from a nifF- background was also susceptible to ADP-ribosylation, indicating that the oxidized form of DR will serve as a substrate for DRAT in vivo. A mutation that changes the Arg-101 residue of DR, the ADP-ribose attaching site, eliminates the ADP-ribosylation of DR in vivo, confirming the necessity of this residue for modification.  相似文献   

19.
Dinitrogenase reductase from a Rhodospirillum rubrum strain lacking dinitrogenase was reversibly ADP-ribosylated in vivo in response to dark-light transitions. Addition of ammonia also led to ADP-ribosylation in this strain. These results demonstrate that reduced dinitrogenase is a satisfactory substrate for the reversible ADP-ribosylation system of R. rubrum in vivo.  相似文献   

20.
Chemical cross-linking of dinitrogenase reductase and dinitrogenase reductase ADP-ribosyltransferase (DRAT) from Rhodospirillum rubrum has been investigated with a cross-linking system utilizing two reagents, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and sulfo-N-hydroxysuccinimide. Cross-linking between dinitrogenase reductase and DRAT requires the presence of NAD, the cellular ADP-ribose donor, or a NAD analog containing an unmodified nicotinamide group, such as nicotinamide hypoxanthine dinucleotide. NADP, which will not replace NAD in the modification reaction, does support cross-linking between dinitrogenase reductase and DRAT. The DRAT-catalyzed ADP-ribosylation of dinitrogenase reductase is inhibited by sodium chloride, as is the cross-linking between dinitrogenase reductase and DRAT, suggesting that ionic interactions are required for the association of these two proteins. Cross-linking is specific for native, unmodified dinitrogenase reductase, in that both oxygen-denatured and ADP-ribosylated dinitrogenase reductase fail to form a cross-linked complex with DRAT. The ADP-bound and adenine nucleotide-free states of dinitrogenase reductase form cross-linked complexes with DRAT; however, cross-linking is inhibited when dinitrogenase reductase is in its ATP-bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号