首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time‐consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome–environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described “islands of differentiation,” and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.  相似文献   

2.
不同水分下准噶尔无叶豆分株种群特征和生物量分配差异   总被引:1,自引:0,他引:1  
王建成  施翔  张道远  尹林克 《生态学报》2009,29(12):6475-6481
准噶尔无叶豆是豆科无叶豆属小半灌木,在中国仅片断化分布于新疆古尔班通古特沙漠局部区域.该种自然种群种子萌发率极低(<3%),主要靠克隆繁殖维持种群.为研究克隆生长在异质性生境中的可塑性特征及其生态适应意义,对生境土壤含水量存在差异的两个准噶尔无叶豆自然种群(河边种群,沙漠种群)的分株种群特征、生物量及其分配比重进行了比较,研究发现:①在分株种群特征上,河边种群的分株显著高于沙漠种群,分株间距也显著大于沙漠种群.沙漠种群分株密度和根的密度显著大于河边种群,但每一分株拥有根的概率显著小于河边种群;②在生物量分配方面,河边种群具有比沙漠种群大的根生物量,但根茎生物量则要显著的小于沙漠种群;③在植株各部分生物量比重随植株大小的变化趋势上,河边种群各部分的比重随植株大小变化的趋势平缓,而沙漠种群各部分的比重变化趋势则较为急剧,表明河边准噶尔无叶豆分株种群随着植株的大小变化,资源分配比例并没有发生很明显的变化,而沙漠种群变化较大.结果表明,准噶尔无叶豆种群对所处生境水分条件存在可塑性响应,并通过分株种群特征变化和生物量分配差异应对水分条件的变化,形成自身的适应对策.  相似文献   

3.
王建成  施翔  张道远  尹林克 《生态学报》2009,29(7):3641-3648
以多年生克隆植物准噶尔无叶豆(Eremosparton songoricum(Litv.)Vass.)为材料,选择河边(A种群)和沙漠腹地(B种群)两个沙丘,研究从沙丘底部至顶部,沿着水分条件连续变化的梯度,准噶尔无叶豆在分株种群和克隆片段水平的形态变化特征,以期能揭示其在异质性小生境内利用水分资源的对策,并为准噶尔无叶豆的资源保护、培育和利用提供有意义的参考.研究发现:①在分株种群水平,A种群分株高度及地上部生物量显著高于B种群,而B种群地下部(根)的生物量则显著高于A种群;②在克隆片段水平,随着沙丘底部至顶部,A种群与B种群克隆片段高度和地上生物量都减小,而分株密度都增加,但升高或降低的强度不同;A种群根的生物量和长度增加,主要是水平的位于地下0~10 cm层面的直径10mm以下的根长度增加,而B种群根的生物量减小,但长度却在增加,主要是水平的位于地下0~10 cm层面的直径6mm以下的细根长度增加.水平细根的长度增加,更利于无性系进行广泛觅食,同时促进无性系尽快越过不利生境斑块和提高分株在有利生境中的生长概率.结果表明,准噶尔无叶豆对沙丘坡面水分条件连续变化的异质性小生境存在分株种群及克隆片段两个等级的可塑性响应,并通过可塑性变化适应了沙丘坡面水分条件的分异.  相似文献   

4.
青海三江源地区风沙土养分及微生物区系   总被引:4,自引:3,他引:4  
采用常规方法研究了青海三江源地区风沙土的养分状况及微生物区系.结果表明,从流动、半固定风沙土到固定风沙土的演化过程中,土壤有机质含量明显增加,固定风沙土的有机质含量分别为流动和半固定风沙土的5.9和3.8倍;土壤氮素和磷素含量的变化趋势与有机质基本一致,均呈递增趋势;土壤钾素含量和土壤pH无明显变化规律.随着植被发育、流沙固定及土壤养分状况改善,风沙土中的微生物数量和区系组成也发生了显著变化.固定和半固定风沙土中的细菌、真菌及放线菌数量均明显高于流动风沙土,其细菌数量分别约为流动风沙土的4.0和2.8倍,真菌数量分别约为19.6和6.3倍,放线菌数量分别约为12.4和2.6倍;真菌种类数明显增加,放线菌区系组成也变得复杂.即随着风沙土由流动变为固定,土壤微生物生态系统中微生物的生物多样性增强,微生物组成趋于多样化.风沙土中的微生物数量与土壤有机质、全氮、速效氮及速效磷含量显著或极显著相关,与土壤全磷、全钾、速效钾含量及土壤pH之间相关性未达显著水平.  相似文献   

5.
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air‐filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.  相似文献   

6.
Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to anticipate the impact of global change on dune ecosystem functioning.  相似文献   

7.
人工固沙措施对沙丘沉积物特征及土壤养分的影响   总被引:5,自引:0,他引:5  
为探明人工铺设尼龙网状固沙措施对风沙危害的影响,以腾格里沙漠东南部人工固定沙丘、两类自然流动沙丘以及防护林的地表沉积物和结皮为研究对象,研究沙丘不同位置、不同深度沉积物的颗粒组成、土壤有机质、有效氮、有效磷、有效钾含量等养分特征。结果表明:(1)人工固定沙丘和自然流动沙丘粒度组成和土壤养分含量都存在显著差异(P0.5),沙障的防风,固沙和土壤改良作用明显。(2)人工固定沙丘各个地貌位置沉积物粒度频率曲线均出现三峰,反映了沙障对粉尘沉积物的拦截作用,体现了沙障对土壤理化性质的改良过程;分选性随风向逐渐变差,随着粒径变细而好;偏度和峰度明显高于其他。(3)整个研究区沉积物偏碱性,影响着土壤养分含量。人工固定沙丘养分含量最高,有效氮和有机质含量均为最大,有效磷和有效钾含量略低于对比林,其粉沙物质含量与养分含量成正比。(4)人工固定沙丘的沙丘迎、背风坡均有植被分布,并覆有土壤物理结皮,沉积物粒级分配较自然发育的流动沙丘分散,养分含量增加。由此可见,沙障对沙区的土壤环境和生态环境改善具有重要的影响。  相似文献   

8.
毛乌素沙地锦鸡儿(Caragana)种群形态变异   总被引:7,自引:1,他引:6  
以柠条锦鸡儿(Caraganakorshinskii)人工种群为对照,研究了自然分布在内蒙古毛乌素沙地各类生境(硬梁、覆沙硬梁、覆沙软梁、覆沙滩地和沙丘)的9个锦鸡儿种群的具分种意义的形态特征的变异。荚果长度在一个植株内是比较稳定的性状;但在各个种群内、种群间变异很大,覆盖了小叶锦鸡儿(C.microphylla)、中间锦鸡儿(C.intermedia)和柠条锦鸡儿3个种的范围。同一生境不同种群以及不同生境种群的比较,说明,.决定荚果长度的主要是遗传因素,环境因子如水分条件可能只起次要作用。每个自然种群荚果长度的分布出现几个峰值,说明种群遗传组成的异质性。小叶形状和被毛的资料也说明各个种群内和种群间的异质性。看来,该地区锦鸡儿是上述3种锦鸡儿的杂种带(Hybridzone).形态变异资料也说明毛乌素沙地在遗体多样性方面也是生态过渡带。  相似文献   

9.
《Acta Oecologica》2006,29(3):306-312
Since the response to differences in resource availability is most pronounced in smaller individuals of vascular epiphytes such as Werauhia sanguinolenta Cogn. et Marchal (Bromeliaceae), I expected variation in growth and survival of small individuals to play an important role in the dynamics of entire populations. Four annual censuses (2002–2005) of three study populations, which were located across the isthmus of Panama, allowed me to construct stage transition matrices, and to conduct growth analysis and elasticity analysis. Differences between populations were highly consistent through time, but, contrary to expectations, hardly related to the comportment of smaller plants. For example, although average mortality rates were highest at the driest site, close to the Pacific, small plants were not predominantly affected. Similarly, although the highest relative growth rates (RGR) of individuals and the highest population growth rates (λ) were found in the population with the highest moisture input, which was located close to the Atlantic coast, this was not due to a particularly strong stimulation of RGR in small plants. Elasticity analysis indicated rather small differences in the importance of the three demographic processes growth, survival, and reproduction for population growth in the three populations, but invariably identified the survival of large tanks as the single most important process determining λ.  相似文献   

10.
Halimium halimifolium (L.)Willk. is a woodyCistaceae species occurring locally in the Western Mediterranean. At the Doñana National Park (S Atlantic coast of Spain),Halimium halimifolium is the main component of stable sand vegetation. It grows in a range of environmental conditions from flood-prone depressions to mobile dunes, but it is most abundant, and dominates the scrub composition on the slopes of fixed dune ridges with a water table depth of 2 to 4 m. The species exhibits not only morphological modifications (hairy leaves and twigs), but also structural and ecophysiological adaptations. The response ofH. halimifolium to stress conditions (leaf water potential, leaf diffusion resistance, and plant growth) have been studied in the field, throughout an annual cycle in four populations growing in different environments, three dune types differing in soil moisture, and one dune slack. Results showed that plants from the hygrophytic area (MN) had the less negative water potentials, the lowest stomatal resistances and the biggest vegetative growth, together with the highest Leaf Area Index, canopy light extinction, the largest leaf area and the lowest sclerophyll index. Plants from the most xerophytic area (MB) had the lowest Leaf Area Index, the smallest leaf area and the highest sclerophyll index. Even though in dune slopes (MI) water table was shallower than in MB, plants in the latter had more negative water potentials and bigger vegetative growth. Water potential values only exhibited significant differences among the four populations at the end of the spring period and over the summer. These results are discussed in relation to the climatic conditions of the study period (3 years of a drought cycle). Plants from the mobile dune system showed features which were intermediate between MN and MI plants.  相似文献   

11.
Seedlings of nine southern Chilean trees were grown at three nutrient supply rates, to examine the roles of growth rate, biomass distribution and nutrient use traits in determining species natural distributions on resource gradients. Relative growth rate (RGR) showed no overall relationship with species site requirements, although RGR of fertile-site species tended to be more responsive to nutrient supply. In the low-nutrient treatment, infertility-tolerant Fitzroya cupressoides showed a higher RGR rank than a fertility-demanding species (Laurelia philippiana) which outgrew it substantially at the highest supply rate. This reversal of RGR ranks was associated with divergent nutrient use responses: at high nutrient supply both spp. had similar plant nitrogen concentrations (PNC), whereas at the low supply rate Fitzroya’s production of biomass per unit of assimilated N was twice that of Laurelia’s. However, this pattern does not appear to serve as a general explanation of the respective distributions of the study species, as RGR ranks of most species were unaltered by nutrient supply. At low nutrient availability, no clear differences in shoot:root ratio (SRR) were apparent between poor-site and fertile-site species. However, at high nutrient availability, SRR was markedly higher in the latter, resulting from differences in biomass allocation to stems (not leaves). Leaf area ratios (LAR) were higher in fertile-site species than in those tolerant of low fertility, because of differences in specific leaf area rather than leaf weight ratio. Very high LAR at high nutrient supply was characteristic of most shade-tolerant angiosperms, but not of shade-tolerant conifers. Although PNC showed no overall differences between poor- and fertile-site species, sensitivity of PNC to external supply rate was greatest in two infertility-tolerant conifers. In contrast, the angiosperm Weinmannia trichosperma, although tolerant of low fertility, responded to increased nutrient supply with greatly increased RGR and little change in PNC. Results show little trait convergence between conifers and angiosperms in adaptation both to shade and to infertile soils; i.e. fitness of different taxa in a given environment may hinge on different trait combinations. Received: 12 September 1995 /Accepted: 14 June 1996  相似文献   

12.
Gerhard Zotz   《Acta Oecologica》2005,28(3):306-312
Since the response to differences in resource availability is most pronounced in smaller individuals of vascular epiphytes such as Werauhia sanguinolenta Cogn. et Marchal (Bromeliaceae), I expected variation in growth and survival of small individuals to play an important role in the dynamics of entire populations. Four annual censuses (2002–2005) of three study populations, which were located across the isthmus of Panama, allowed me to construct stage transition matrices, and to conduct growth analysis and elasticity analysis. Differences between populations were highly consistent through time, but, contrary to expectations, hardly related to the comportment of smaller plants. For example, although average mortality rates were highest at the driest site, close to the Pacific, small plants were not predominantly affected. Similarly, although the highest relative growth rates (RGR) of individuals and the highest population growth rates (λ) were found in the population with the highest moisture input, which was located close to the Atlantic coast, this was not due to a particularly strong stimulation of RGR in small plants. Elasticity analysis indicated rather small differences in the importance of the three demographic processes growth, survival, and reproduction for population growth in the three populations, but invariably identified the survival of large tanks as the single most important process determining λ.  相似文献   

13.
Insufficient nitrogen (N) and phosphorus (P) frequently limit primary production. Although most nutrient studies on vascular epiphytes have focused on N uptake, circumstantial evidence suggests that P rather than N is the most limiting element for growth in this plant group. We directly tested this by subjecting a total of 162 small individuals of three bromeliad species ( Guzmania monostachia , Tillandsia elongata , Werauhia sanguinolenta ) to three N and three P levels using a full-factorial experimental design, and determined relative growth rates (RGR) and nutrient acquisition over a period of 11 weeks. Both N and P supply had a significant effect on RGR, but only tissue P concentrations were correlated with growth. Uptake rates of N and P, in contrast, were not correlated with RGR. Increased nutrient supply led to an up to sevenfold increase in tissue P concentration compared to natural conditions, while concentrations of N hardly changed or even decreased. All treatment combinations, even at the lowest experimental P supply, led to decreased N:P ratios. We conclude that P is at least as limiting as N for vegetative function under natural conditions in these epiphytic bromeliads. This conclusion is in line with the general notion of the prevalence of P limitation for the functioning of terrestrial vegetation in the tropics.  相似文献   

14.
不同沙丘生境主要植物比叶面积和叶干物质含量的比较   总被引:42,自引:2,他引:42  
研究了生长在不同沙丘生境中 (流动沙丘 ,半固定沙丘和固定沙丘 ) 2 0个植物种 (10个 1年生植物种和 10个多年生植物种 )的比叶面积 (SL A)和叶干物质含量 (L DMC)的变化 ,并且分析了各个沙丘生境的土壤养分特征。结果表明 ,各个植物种的平均 SL A和 L DMC在植物种之间差异显著 ;多数在两种或 3种沙丘生境均有分布的植物其 SL A在不同沙丘生境之间差异显著 ,但是仅有 6个植物种的 L DMC在不同沙丘生境之间表现出差异 (p<0 .0 5 )。与许多研究结果类似 ,1年生植物的 SL A显著大于多年生植物的 SL A,而且两者之间 L DMC存在一定的差异。 1年生植物 SL A和 L DMC之间相关性不显著 ,但多年生植物SL A和 L DMC之间呈显著负相关。综合所有 2 0个植物种可以发现 ,SL A增大时 ,L DMC有下降的趋势  相似文献   

15.
Microhabitat heterogeneity can lead to fine‐scale local adaptation when gene flow is restricted, which may be important for the maintenance of genetic variation within populations. This study tested whether microhabitat heterogeneity was associated with trait differences in a population of Arabidopsis lyrata and studied its impact on the genetic variance–covariance (G) matrix. Maternal seed families were collected from dune tops and bottoms, two microhabitats known to vary significantly in water availability. In a common garden experiment, replicate individuals per family were raised under wet and dry conditions, and physiological, morphological and life‐history traits were assessed. Plants from the two microenvironments differed in their response to treatment in two performance components, in stomata density and most strongly in flowering time. Under wet conditions, plants originating from dune bottoms flowered 4 weeks earlier than those from dune tops. Only one of three G‐matrix comparisons revealed that habitat heterogeneity and evolutionary potential were positively linked. The number of independent trait dimensions was larger in the entire population than within subpopulations separated by microhabitat under wet conditions. However, the size of the G‐matrix was no larger in the entire population than within subpopulations separated by microhabitat, and trait correlation structure between microhabitats and treatments was not significantly different. These results indicate that fine‐scale habitat heterogeneity likely led to local adaptation, which weakly affected levels of across‐trait genetic variation.  相似文献   

16.

Background and Aims

Nitrogen availability varies greatly over short time scales. This requires that a well-adapted plant modify its phenotype by an appropriate amount and at a certain speed in order to maximize growth and fitness. To determine how plastic ontogenetic changes in each trait interact and whether or not these changes are likely to maximize growth, ontogenetic changes in relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and root weight ratio (RWR), before and after a decrease in nitrogen supply, were studied in 14 herbaceous species.

Methods

Forty-four plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly decreased from 1 to 0·01 mm during the growth period.

Key Results and Conclusions

In the treatment series, and in comparison with the control, NAR and RGR decreased, RWR increased, and SLA did not change except for the timing of ontogenetic change. Species having greater increases in the maximum rate of change in RWR also had smaller reductions in RGR; plasticity in RWR is therefore adaptive. In contrast, species which showed a greater decrease in NAR showed stronger reductions in RGR; plasticity in NAR is therefore not adaptive. Plasticity in RGR was not related to plasticity in SLA. There were no significant relationships among the plasticities in NAR, RWR or SLA. Potentially fast-growing species experienced larger reductions in RGR following the nitrogen reduction. These results suggest that competitive responses to interspecific competition for nitrogen might be positively correlated with the plasticity in the maximum rate of change in RWR in response to a reduction in nitrogen supply.  相似文献   

17.
Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0–5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs.  相似文献   

18.
We explicitly tested the following predictions using Gerbillus allenbyi and G. pyramidum foraging on artificial arrays of natural seedbank on a semi-stabilized sand dune: 1. that the gerbils will forage using a quitting harvest rate rule, 2. that larger seeds are preferred due to higher encounter rates, and 3. that there are community level consequences for the annual plants as a direct result of foraging by the desert rodents. Natural seedbank, separated into two size classes, was placed in seed trays in the field at four different densities (1/16×, 1/4×, 1×, and 2×normal). Following exposure to granivory, the remaining seeds were weighed and germinated to test for community level effects. Only the 1× and 2×normal density plots were heavily foraged, and at both seed sizes, which suggests that the gerbils employed a quitting harvest rate rule. In support of our second prediction, the two species of gerbils tended to consume more of the larger seeds, particularly at higher densities. The mean number and total number of plant species that germinated in plots exposed to granivores was not significantly different from unexposed samples. At the community level however, there was no net association of germinated plant species in the four treatment groups exposed to granivores, but a significant net positive association in the unexposed control seedbank. Gerbil foraging on annual plant seedbank may thus subtly change the entire community structure (from positive to neutral), although not necessarily shift the species distributions significantly. Our results corroborate other studies involving artificial food types such as millet and suggest that foraging decisions may affect the plant community.  相似文献   

19.
The population structure and water relations ofArtemisia ordosica were studied at different stages of the sand dune fixation process. Vegetation coverage and biomass increased as the sand dune fixation process progressed. In contrast, individual growth rate decreased in the late fixation stage. On fixed sand dunes the modal age ofA. ordosica plants was higher and seedlings or saplings were rearely observed. On active sand dunes, settlement of seedlings was regulated by sand mobility; that is, seedlings were observed only when sand mobility was below 10 cm per year. Leaf transpiration was highest in active sand dunes. Stand transpiration in fixed sand dunes was lower than in semi-fixed sand dunes. These differences in transpiration were related to a decrease in soil water availability, which was affected by the increase in the aeolian fine soil component during the course of sand dune fixation. The reduction in soil water status and the cessation of sand movement were considered to be important factors in the decline of theArtemisia ordosica community.  相似文献   

20.
松嫩平原不同生境芦苇种群分株的生物量分配与生长分析   总被引:54,自引:8,他引:46  
在松嫩平原8月中旬,4个旱地生境芦苇种群分株的生长和生产力以季节性临时积水的低洼地为最高,以碱斑地为最低,两个生境之间分株高度相差2.8倍,分株生物量相差4.4倍,其它2个生境沙地和草甸混生 少也达到了显著或极显著水平,不同生境芦苇种群分株生物量分配的差异,蕴涵着重要的生长调节和物质分配策略。在分株株较小而又有充分生长空间的沙地生境和三斑生境,以及具有种间竞争的草句生境,分株将50%以上的物质分配给叶的建造上,以保证充分的物质生产;在环境条件相对较好的低洼地生境,分株将近40%的物质分配给茎的伸长生长,以提高个体对空间和光资源的竞争力。4个生境芦苇种群在分株增高与增重,以及茎、叶与分株的相对增重均具有相同的幂函数异速生长规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号