首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolically stable consortia of anaerobic bacteria obtained by enrichment of sediment samples with 3,4,5-trimethoxybenzoate (TMBA), 3,4,5-trihydroxybenzoate (gallate [GA]), or 5-chlorovanillin (CV) were used to study the anaerobic transformation of a series of chloroveratroles, chloroguaiacols, and chlorocatechols used as cosubstrates. Experiments were carried out with growing cultures, and the following pathways were demonstrated for metabolism of the growth substrates: (i) TMBA produced GA, which was further degraded without the formation of aromatic intermediates; (ii) GA formed pyrogallol, which was stable to further transformation; and (iii) CV was degraded by a series of steps involving de-O-methylation, oxidation of the aldehyde group, and decarboxylation to 3-chlorocatechol before ring cleavage. Mono-de-O-methylation of the cosubstrates occurred rapidly in the order 4,5,6-trichloroguaiacol greater than 3,4,5-trichloroguaiacol approximately 3,4,5-trichloroveratrole approximately tetrachloroveratrole greater than tetrachloroguaiacol and was concomitant with degradation of the growth substrates. For the polymethoxy compounds--chloroveratroles, 1,2,3-trichloro-4,5,6-trimethoxybenzene, and 4,5,6-trichlorosyringol--de-O-methylation took place sequentially. The resulting chlorocatechols were stable to further transformation until the cultures had exhausted the growth substrates; selective dechlorination then occurred with the formation of 3,5-dichlorocatechol from 3,4,5-trichlorocatechol and of 3,4,6-trichlorocatechol from tetrachlorocatechol. 2,4,5-, 2,4,6-, and 3,4,5-trichoroanisole and 2,3,4,5-tetrachloroanisole were de-O-methylated, but the resulting chlorophenols were resistant to dechlorination. These results extend those of a previous study with spiked sediment samples and their endogenous microflora and illustrate some of the transformations of chloroguaiacols and chlorocatechols which may be expected to occur in anaerobic sediments.  相似文献   

2.
Metabolically stable consortia of anaerobic bacteria obtained by enrichment of sediment samples with 3,4,5-trimethoxybenzoate (TMBA), 3,4,5-trihydroxybenzoate (gallate [GA]), or 5-chlorovanillin (CV) were used to study the anaerobic transformation of a series of chloroveratroles, chloroguaiacols, and chlorocatechols used as cosubstrates. Experiments were carried out with growing cultures, and the following pathways were demonstrated for metabolism of the growth substrates: (i) TMBA produced GA, which was further degraded without the formation of aromatic intermediates; (ii) GA formed pyrogallol, which was stable to further transformation; and (iii) CV was degraded by a series of steps involving de-O-methylation, oxidation of the aldehyde group, and decarboxylation to 3-chlorocatechol before ring cleavage. Mono-de-O-methylation of the cosubstrates occurred rapidly in the order 4,5,6-trichloroguaiacol greater than 3,4,5-trichloroguaiacol approximately 3,4,5-trichloroveratrole approximately tetrachloroveratrole greater than tetrachloroguaiacol and was concomitant with degradation of the growth substrates. For the polymethoxy compounds--chloroveratroles, 1,2,3-trichloro-4,5,6-trimethoxybenzene, and 4,5,6-trichlorosyringol--de-O-methylation took place sequentially. The resulting chlorocatechols were stable to further transformation until the cultures had exhausted the growth substrates; selective dechlorination then occurred with the formation of 3,5-dichlorocatechol from 3,4,5-trichlorocatechol and of 3,4,6-trichlorocatechol from tetrachlorocatechol. 2,4,5-, 2,4,6-, and 3,4,5-trichoroanisole and 2,3,4,5-tetrachloroanisole were de-O-methylated, but the resulting chlorophenols were resistant to dechlorination. These results extend those of a previous study with spiked sediment samples and their endogenous microflora and illustrate some of the transformations of chloroguaiacols and chlorocatechols which may be expected to occur in anaerobic sediments.  相似文献   

3.
O-methylation of chloroguaiacols has been examined in a number of gram-positive and gram-negative bacteria to elucidate the effects of substrate concentration, growth conditions, and cell density. Substrate concentrations between 0.1 and 20.0 mg liter−1 were used, and it was found that (i) yields of the O-methylated products were significantly higher at the lowest concentrations and (ii) rates of O-methylation were not linear functions of concentration. With 3,4,5-trichloroguaiacol, the nature of the metabolites also changed with concentration. During growth with a range of substrates, O-methylation of chloroguaiacols also took place. With vanillate, however, de-O-methylation occurred: the chlorocatechol formed from 4,5,6-trichloroguaiacol was successively O-methylated to 3,4,5-trichloroguaiacol and 3,4,5-trichloroveratrole, whereas that produced from 4,5-dichloroguaiacol was degraded without O-methylation. Effective O-methylation in nonproliferating suspensions occurred at cell densities as low as 105 cells ml−1, although both the yields and the rates were lower than in more dense cultures. By using disk assays, it was shown that, compared with their precursors, all of the O-methylated metabolites were virtually nontoxic to the strains examined. It is therefore proposed that O-methylation functions as a detoxification mechanism for cells exposed to chloroguaiacols and chlorophenols. In detail, significant differences were observed in the response of gram-positive and gram-negative cell strains to chloroguaiacols. It is concluded that bacterial O-methylation is to be expected in the natural environment subjected to discharge of chloroguaiacols.  相似文献   

4.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C2-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C′1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

5.
Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C(2)-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C'1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal significance of bioavailability in determining their recalcitrance to dechlorination and O demethylation, respectively. It is suggested that bioavailability is an important factor in determining the persistence of xenobiotics in natural ecosystems and that its omission represents a serious limitation in the interpretation of many laboratory experiments directed towards determining the persistence of xenobiotics in aquatic ecosystems.  相似文献   

6.
Nitrogen fixation (C2H2 reduction) in a sediment-water system was studied under anaerobic incubation conditions. Sodium sulfide at low concentrations stimulated activity, with a twofold increase in C2H4 production occurring in the presence of 8 μmol of S2− per ml of stream water. Sodium sulfide at concentrations of 16 μmol of S2− per ml or greater inhibited nitrogen fixation, with 64 μmol of S2− per ml being completely inhibitory. Sulfide at levels of 16 μmol/ml or above inhibited CO2 production, and the degree of inhibition increased with increasing concentration of sulfide. Titanium (III) citrate (used to modify Eh levels) stimulated both nitrogen fixation and CO2 production, but could not duplicate, at any concentration tested, the twofold increase in nitrogen fixation caused by 8 μmol of S2− per ml. Sulfide additions caused pH changes in the sediment, and when the sediment was adjusted and maintained at pH 7.0 all concentrations of sulfide inhibited nitrogen fixation activity. From considerations of the redox equilibria of H2, H2S, and other sulfur species at various pH values, it appeared that H2S was the toxic entity and that HS was less toxic. The observed stimulation of activity was apparently due to a pH change coupled with the concurrent production of HS from H2S.  相似文献   

7.
Hydrogen production by incubated cyanobacterial epiphytes occurred only in the dark, was stimulated by C2H2, and was inhibited by O2. Addition of NO3 inhibited dark, anaerobic H2 production, whereas the addition of NH4+ inhibited N2 fixation (C2H2 reduction) but not dark H2 production. Aerobically incubated cyanobacterial aggregates consumed H2, but light-incubated rates (3.6 μmol of H2 g−1 h−1) were statistically equivalent to dark uptake rates (4.8 μmol of H2 g−1 h−1), which were statistically equivalent to dark, anaerobic production rates (2.5 to 10 μmol of H2 g−1 h−1). Production rates of H2 were fourfold higher for aggregates in a more advanced stage of decomposition. Enrichment cultures of H2-producing fermentative bacteria were recovered from freshly harvested, H2-producing cyanobacterial aggregates. Hydrogen production in these cyanobacterial communities appears to be caused by the resident bacterial flora and not by the cyanobacteria. In situ areal estimates of dark H2 production by submerged epiphytes (6.8 μmol of H2 m−2 h−1) were much lower than rates of light-driven N2 fixation by the epiphytic cyanobacteria (310 μmol of C2H4 m−2 h−1).  相似文献   

8.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   

9.
An investigation of the terminal anaerobic processes occurring in polluted intertidal sediments indicated that terminal carbon flow was mainly mediated by sulfate-reducing organisms in sediments with high sulfate concentrations (>10 mM in the interstitial water) exposed to low loadings of nutrient (equivalent to <102 kg of N · day−1) and biochemical oxygen demand (<0.7 × 103 kg · day−1) in effluents from different pollution sources. However, in sediments exposed to high loadings of nutrient (>102 kg of N · day−1) and biochemical oxygen demand (>0.7 × 103 kg · day−1), methanogenesis was the major process in the mediation of terminal carbon flow, and sulfate concentrations were low (≤2 mM). The respiratory index [14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism, a measure of terminal carbon flow, was ≥0.96 for sediment with high sulfate, but in sediments with sulfate as little as 10 μM in the interstitial water, respiratory index values of ≤0.22 were obtained. In the latter sediment, methane production rates as high as 3 μmol · g−1 (dry weight) · h−1 were obtained, and there was a potential for active sulfate reduction.  相似文献   

10.
Metabolically stable anaerobic cultures obtained by enrichment with 5-bromovanillin, 5-chlorovanillin, catechin, and phloroglucinol were used to study dechlorination of chlorocatechols. A high degree of specificity in dechlorination was observed, and some chlorocatechols were appreciably more resistant to dechlorination than others: only 3,5-dichlorocatechol, 4,5-dichlorocatechol, 3,4,5-trichlorocatechol, and tetrachlorocatechol were dechlorinated, and not all of them were dechlorinated by the same consortium. 3,5-Dichlorocatechol produced 3-chlorocatechol, 4,5-dichlorocatechol produced 4-chlorocatechol, and 3,4,5-trichlorocatechol produced either 3,5-dichlorocatechol or 3,4-dichlorocatechol; tetrachlorocatechol produced only 3,4,6-trichlorocatechol. Incubation of uncontaminated sediments without additional carbon sources brought about dechlorination of 3,4,5-trichlorocatechol to 3,5-dichlorocatechol. O-demethylation of chloroguaiacols was generally accomplished by enrichment cultures, except that catechin enrichment was unable to O-demethylate tetrachloroguaiacol. None of the enrichments dechlorinated any of the polychlorinated phenols examined. The results suggested that dechlorination was not dependent on enrichment with or growth at the expense of chlorinated compounds and that it would be premature to formulate general rules for the structural dependence of the dechlorination reaction.  相似文献   

11.
The microbial ecology of anaerobic carbon oxidation processes was investigated in Black Sea shelf sediments from mid-shelf with well-oxygenated bottom water to the oxic-anoxic chemocline at the shelf-break. At all stations, organic carbon (Corg) oxidation rates were rapidly attenuated with depth in anoxically incubated sediment. Dissimilatory Mn reduction was the most important terminal electron-accepting process in the active surface layer to a depth of ~1 cm, while SO42− reduction accounted for the entire Corg oxidation below. Manganese reduction was supported by moderately high Mn oxide concentrations. A contribution from microbial Fe reduction could not be discerned, and the process was not stimulated by addition of ferrihydrite. Manganese reduction resulted in carbonate precipitation, which complicated the quantification of Corg oxidation rates. The relative contribution of Mn reduction to Corg oxidation in the anaerobic incubations was 25 to 73% at the stations with oxic bottom water. In situ, where Mn reduction must compete with oxygen respiration, the contribution of the process will vary in response to fluctuations in bottom water oxygen concentrations. Total bacterial numbers as well as the detection frequency of bacteria with fluorescent in situ hybridization scaled to the mineralization rates. Most-probable-number enumerations yielded up to 105 cells of acetate-oxidizing Mn-reducing bacteria (MnRB) cm−3, while counts of Fe reducers were <102 cm−3. At two stations, organisms affiliated with Arcobacter were the only types identified from 16S rRNA clone libraries from the highest positive MPN dilutions for MnRB. At the third station, a clone type affiliated with Pelobacter was also observed. Our results delineate a niche for dissimilatory Mn-reducing bacteria in sediments with Mn oxide concentrations greater than ~10 μmol cm−3 and indicate that bacteria that are specialized in Mn reduction, rather than known Mn and Fe reducers, are important in this niche.  相似文献   

12.
The kinetic parameters Km, Vmax, Tt (turnover time), and v (natural velocity) were determined for H2 and acetate conversion to methane by Wintergreen Lake sediment, using short-term (a few hours) methods and incubation temperatures of 10 to 14°C. Estimates of the Michaelis-Menten constant, Km, for both the consumption of hydrogen and the conversion of hydrogen to methane by sediment microflora averaged about 0.024 μmol g−1 of dry sediment. The maximal velocity, Vmax, averaged 4.8 μmol of H2 g−1 h−1 for hydrogen consumption and 0.64 μmol of CH4 g−1 h−1 for the conversion of hydrogen to methane during the winter. Estimated natural rates of hydrogen consumption and hydrogen conversion to methane could be calculated from the Michaelis-Menten equation and estimates of Km, Vmax, and the in situ dissolved-hydrogen concentration. These results indicate that methane may not be the only fate of hydrogen in the sediment. Among several potential hydrogen donors tested, only formate stimulated the rate of sediment methanogenesis. Formate conversion to methane was so rapid that an accurate estimate of kinetic parameters was not possible. Kinetic experiments using [2-14C]acetate and sediments collected in the summer indicated that acetate was being converted to methane at or near the maximal rate. A minimum natural rate of acetate conversion to methane was estimated to be about 110 nmol of CH4 g−1 h−1, which was 66% of the Vmax (163 nmol of CH4 g−1 h−1). A 15-min preincubation of sediment with 5.0 × 10−3 atm of hydrogen had a pronounced effect on the kinetic parameters for the conversion of acetate to methane. The acetate pool size, expressed as the term Km + Sn (Sn is in situ substrate concentration), decreased by 37% and Tt decreased by 43%. The Vmax remained relatively constant. A preincubation with hydrogen also caused a 37% decrease in the amount of labeled carbon dioxide produced from the metabolism of [U-14C]valine by sediment heterotrophs.  相似文献   

13.
Nitrogenase activity in mangrove forests at two locations in the North Island, New Zealand, was measured by acetylene reduction and 15N2 uptake. Nitrogenase activity (C2H2 reduction) in surface sediments 0 to 10 mm deep was highly correlated (r = 0.91, n = 17) with the dry weight of decomposing particulate organic matter in the sediment and was independent of light. The activity was not correlated with the dry weight of roots in the top 10 mm of sediment (r = −0.01, n = 13). Seasonal and sample variation in acetylene reduction rates ranged from 0.4 to 50.0 μmol of C2H4 m−2 h−1 under air, and acetylene reduction was depressed in anaerobic atmospheres. Nitrogen fixation rates of decomposing leaves from the surface measured by 15N2 uptake ranged from 5.1 to 7.8 nmol of N2 g (dry weight)−1 h−1, and the mean molar ratio of acetylene reduced to nitrogen fixed was 4.5:1. Anaerobic conditions depressed the nitrogenase activity in decomposing leaves, which was independent of light. Nitrogenase activity was also found to be associated with pneumatophores. This activity was light dependent and was probably attributable to one or more species of Calothrix present as an epiphyte. Rates of activity were generally between 100 and 500 nmol of C2H4 pneumatophore−1 h−1 in summer, but values up to 1,500 nmol of C2H4 pneumatophore−1 h−1 were obtained.  相似文献   

14.
A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments.  相似文献   

15.
Two types of diazotrophic microbial communities were found in the littoral zone of alkaline hypersaline Mono Lake, California. One consisted of anaerobic bacteria inhabiting the flocculent surface layers of sediments. Nitrogen fixation (acetylene reduction) by flocculent surface layers occurred under anaerobic conditions, was not stimulated by light or by additions of organic substrates, and was inhibited by O2, nitrate, and ammonia. The second community consisted of a ball-shaped association of a filamentous chlorophyte (Ctenocladus circinnatus) with diazotrophic, nonheterocystous cyanobacteria, as well as anaerobic bacteria (Ctenocladus balls). Nitrogen fixation by Ctenocladus balls was usually, but not always, stimulated by light. Rates of anaerobic dark fixation equaled those in the light under air. Fixation in the light was stimulated by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea and by propanil [N-(3,4-dichlorophenyl)propanamide]. 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea-elicited nitrogenase activity was inhibited by ammonia (96%) and nitrate (65%). Fixation was greatest when Ctenocladus balls were incubated anaerobically in the light with sulfide. Dark anaerobic fixation was not stimulated by organic substrates in short-term (4-h) incubations, but was in long-term (67-h) ones. Areal estimates of benthic N2 fixation were measured seasonally, using chambers. Highest rates (~29.3 μmol of C2H4 m−2 h−1) occurred under normal diel regimens of light and dark. These estimates indicate that benthic N2 fixation has the potential to be a significant nitrogen source in Mono Lake.  相似文献   

16.
A method was developed to follow bacterial nitrate reduction in freshwater sediments by using common high-performance liquid chromatographic equipment. The low detection limit (14 pmol) of the method enabled us to study concentration profiles and reaction kinetics under natural conditions. Significant nitrate concentrations (1 to 27 μM) were observed in the sediment of Lake Vechten during the nonstratified period; the concentration profiles showed a successive depletion of oxygen, nitrate, and sulfate with depth. The profiles were restricted to the upper 3 cm of the sediment which is rich in organics and loosely structured. Nitrate reduction in the sediment-water interface followed first-order reaction kinetics at in situ concentrations. Remarkably high potential nitrate-reducing activity was observed in the part of the sediment in which nitrate did not diffuse. This activity was also observed throughout the whole year. Estimates of Km varied between 17 and 100 μM and Vmax varied between 7.2 and 36 μmol cm−3 day−1 for samples taken at different depths. The diffusion coefficient of nitrate ([10 ± 0.4] × 10−6 cm2 s−1) across the sediment-water interface was estimated by a constant-source technique and applied to a mathematical model to estimate the net nitrate reduction during the nonstratified period. In this period, observed nitrate reduction rates by the model, 0.2 to 0.4 mmol m−2 day−1, were lower than those found for oxygen (27 mmol m−2 day−1) and sulfate (0.4 mmol m−2 day−1). During the summer stratification, nitrate was absent in the sediment and reduction could not be estimated by the model.  相似文献   

17.
Studies were carried out to elucidate the nature and importance of Fe3+ reduction in anaerobic slurries of marine surface sediment. A constant accumulation of Fe2+ took place immediately after the endogenous NO3 was depleted. Pasteurized controls showed no activity of Fe3+ reduction. Additions of 0.2 mM NO3 and NO2 to the active slurries arrested the Fe3+ reduction, and the process was resumed only after a depletion of the added compounds. Extended, initial aeration of the sediment did not affect the capacity for reduction of NO3 and Fe3+, but the treatments with NO3 increased the capacity for Fe3+ reduction. Addition of 20 mM MoO42− completely inhibited the SO42− reduction, but did not affect the reduction of Fe3+. The process of Fe3+ reduction was most likely associated with the activity of facultative anaerobic, NO3-reducing bacteria. In surface sediment, the bulk of the Fe3+ reduction may be microbial, and the process may be important for mineralization in situ if the availability of NO3 is low.  相似文献   

18.
Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N2 cm−1 h−1 and 667 nmol of N2 liter−1 h−1, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N2 liter−1 h−1. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO2 liter−1 day−1, respectively. Potential denitrification rates were as high as 30 μmol of N2O liter−1 day−1 in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 × 106 to 3 × 108 ml−1 with the number of viable sulfur-metal-oxidizing bacteria reaching 2 × 106 ml−1 in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized.  相似文献   

19.
The yield coefficient (YC) of Pseudomonas sp. strain DP-4, a 2,4-dichlorophenol (DCP)-degrading organism, was estimated from the number of CFU produced at the expense of 1 unit amount of DCP at low concentrations. At a low concentration of DCP, the YC can be overestimated in pure culture, because DP-4 assimilated not only DCP but also uncharacterized organic compounds contaminating a mineral salt medium. The concentration of these uncharacterized organic compounds was nutritionally equivalent to 0.7 μg of DCP-C ml−1. A mixed culture with non-DCP-degrading organisms resulted in elimination of ca. 99.9% of the uncharacterized organic compounds, and then DP-4 assimilated only DCP as a substrate. In a mixed culture, DP-4 degraded an initial concentration of 0.1 to 10 μg of C ml of DCP−1 and the number of CFU of DP-4 increased. In the mixed culture, DCP at an initial concentration of 0.07 μg of C ml−1 was degraded. However, the number of CFU of DP-4 did not increase. DCP at an extremely low initial concentration of 0.01 μg of C ml−1 was not degraded in mixed culture even by a high density, 105 CFU ml−1, of DP-4. When glucose was added to this mixed culture to a final concentration of 1 μg of C ml−1, the initial concentration of 0.01 μg of C ml of DCP−1 was degraded. These results suggested that DP-4 required cosubstrates to degrade DCP at an extremely low initial concentration of 0.01 μg of C ml−1. The YCs of DP-4 at the expense of DCP alone decreased discontinuously with the decrease of the initial concentration of DCP, i.e., 1.5, 0.19, or 0 CFU per pg of DCP-C when 0.7 to 10, 0.1 to 0.5, or 0.07 μg of C ml of DCP−1 was degraded, respectively. In this study, we developed a new method to eliminate uncharacterized organic compounds, and we estimated the YC of DP-4 at the expense of DCP as a sole source of carbon.  相似文献   

20.
Muramic acid, a constituent of procaryotic cell walls, was assayed by high-pressure liquid chromatography in samples from several marine environments (water column, surface microlayer, and sediment) and a bacterial culture. It is used as a microbial biomass indicator. The method gave a good separation of muramic acid from interfering compounds with satisfactory reproducibility. A pseudomonad culture had a muramic acid content of 4.7 × 10−10 to 5.3 × 10−10 μg per cell during growth. In natural water samples, highly significant relationships were found between muramic acid concentrations and bacterial numbers for populations of 108 to 1011 cells per liter. The muramic acid content in natural marine water decreased from 5.3 × 10−10 to 1.6 × 10−10 μg per cell with increasing depth. In coastal sediments exposed to sewage pollution, concentrations of muramic acid, ATP, organic carbon, and total amino acids displayed a parallel decrease with increasing distance from the sewage outlet. Advantages of muramic acid measurement by high-pressure liquid chromatography are its high sensitivity and reduction of preparation steps, allowing a short time analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号