首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative modification of low density lipoprotein (LDL) may play an important role in the development of atherosclerosis. Alpha-tocopherol functions as a major antioxidant in human LDL. The present study was to test whether four natural flavonoids (kempferol, morin, myricetin, and quercetin) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of either 5.0 mM CuSO(4) at 37 degrees C or 1.0 mM of 2,2'-azo-bis (2-amidinopropane) dihydrochloride (AAPH) at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 hour. Under the same experimental conditions, all four flavonoids demonstrated a dose-dependent protecting activity to alpha-tocopherol in LDL at the concentration ranging from 1 to 20microM. All flavonoids showed a varying protective activity against depletion of alpha-tocopherol in LDL, with kempherol and morin being less effective than myricetin and quercetin. The addition of flavonoids to the incubation mixture after 5 minutes demonstrated a significant regeneration of alpha-tocopherol in human LDL. The protective activity of four flavonoids to LDL is related to the number and location of hydroxyl groups in the B ring as well as the stability in sodium phosphate buffer.  相似文献   

2.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

3.
Reactive aldehydes can be formed during the oxidation of lipids, glucose, and amino acids and during the nonenzymatic glycation of proteins. Low density lipoprotein (LDL) modified with malondialdehyde are taken up by scavenger receptors on macrophages. In the current studies we determined whether alpha-hydroxy aldehydes also modify LDL to a form recognized by macrophage scavenger receptors. LDL modified by incubation with glycolaldehyde, glyceraldehyde, erythrose, arabinose, or glucose (alpha-hydroxy aldehydes that possess two, three, four, five, and six carbon atoms, respectively) exhibited decreased free amino groups and increased mobility on agarose gel electrophoresis. The lower the molecular weight of the aldehyde used for LDL modification, the more rapid and extensive was the derivatization of free amino groups. Approximately 50-75% of free lysine groups in LDL were modified after incubation with glyceraldehyde, glycolaldehyde, or erythrose for 24-48 h. Less extensive reductions in free amino groups were observed when LDL was incubated with arabinose or glucose, even at high concentration for up to 5 days. LDL modified with glycolaldehyde and glyceraldehyde labeled with (125)I was degraded more extensively by human monocyte-derived macrophages than was (125)I-labeled native LDL. Conversely, LDL modified with (125)I-labeled erythrose, arabinose, or glucose was degraded less rapidly than (125)I-labeled native LDL. Competition for the degradation of LDL modified with (125)I-labeled glyceraldehyde was nearly complete with acetyl-, glycolaldehyde-, and glyceraldehyde-modified LDL, fucoidin, and advanced glycation end product-modified bovine serum albumin, and absent with unlabeled native LDL.These results suggest that short-chain alpha-hydroxy aldehydes react with amino groups on LDL to yield moieties that are important determinants of recognition by macrophage scavenger receptors.  相似文献   

4.
Much data has accumulated supporting a proatherogenic role for oxidized low density lipoprotein (Ox-LDL). Micronutrient antioxidants such as alpha-tocopherol, the principal lipid-soluble antioxidant, assume potential significance because levels can be manipulated by dietary measures without resulting in side effects. Co-incubation of LDL in vitro with alpha-tocopherol inhibits its oxidative modification. Hence the effect of dietary supplementation with alpha-tocopherol on the time course of copper-catalyzed oxidation of LDL was tested in a randomized placebo-controlled single-blind study. Two groups of 12 male subjects were given either placebo or alpha-tocopherol (800 IU/day) for a period of 12 weeks. Alpha-tocopherol therapy did not result in any side effects or exert an adverse effect on the plasma lipid and lipoprotein profile. While the lipid standardized alpha-tocopherol levels were similar at baseline, the supplemented group had 3.3-fold and 4.4-fold higher levels compared to placebo at 6 and 12 weeks, respectively. In the 15 subjects in whom both plasma and LDL alpha-tocopherol levels were quantitated, there was a significant correlation (r = 0.79, P less than 0.0001). At baseline there were no significant differences in the time course curves of thiobarbituric acid-reacting substances (TBARS) activity or conjugated diene formation between the alpha-tocopherol and placebo groups. However, at both 6 and 12 weeks the mean levels of TBARS activity and conjugated diene formation were lower in the alpha-tocopherol group; the most significant differences were manifest at the 3-h time point. Also at both 6 and 12 weeks the mean rate of oxidation was lower in the alpha-tocopherol group.2+_  相似文献   

5.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

6.
Low density lipoprotein and high density lipoprotein were isolated from rat serum by sequential ultracentrifugation in the density intervals 1.025-1.050 g/ml and 1.125-1.21 g/ml, respectively. The isolated lipoproteins were radioiodinated using ICl. Low density lipoprotein was further purified by concanavalin A affinity chromatography and concentrated by ultracentrifugation. 95% of the purified low density lipoprotein radioactivity was precipitable by tetramethylurea, while only 4% was associated with lipids. The radioiodinated high density lipoprotein was incubated for 1 h at 4 degrees C with unlabelled very low density lipoprotein, followed by reisolation by sequential ultracentrifugation. Only 3% of the radioactivity was associated with lipids and 90% was present on apolipoprotein A-I. The serum decay curves of labelled and subsequently purified rat low and high density lipoprotein, measured over a period of 28 h, clearly exhibited more than one component, in contrast to the monoexponential decay curves of iodinated human low density lipoprotein. The decay curves were not affected by the methods used to purify the LDL and HDL preparations. The catabolic sites of the labelled rat lipoproteins were analyzed in vivo using leupeptin-treated rats. In vivo treatment of rats with leupeptin did not affect the rate of disappearance from serum of intravenously injected labelled rat low density lipoprotein and high density lipoprotein. Leupeptin-dependent accumulation of radioiodine occurred almost exclusively in the liver after intravenous injection of iodinated low density lipoprotein, while both the liver and the kidneys showed leupeptin-dependent accumulation of radioactivity after injection of iodinated high density lipoprotein.  相似文献   

7.
Acyl-CoA:diacylglycerol acyltransferases (DGATs) catalyze the last step in triglyceride (TG) synthesis. The genes for two DGAT enzymes, DGAT1 and DGAT2, have been identified. To examine the roles of liver DGAT1 and DGAT2 in TG synthesis and very low density lipoprotein (VLDL) secretion, liver DGAT1- and DGAT2-overexpressing mice were created by adenovirus-mediated gene transfection. DGAT1-overexpressing mice had markedly increased DGAT activity in the presence of the permeabilizing agent alamethicin. This suggests that DGAT1 possesses latent DGAT activity on the lumen of the endoplasmic reticulum. DGAT1-overexpressing mice showed increased VLDL secretion, resulting in increased gonadal (epididymal or parametrial) fat mass but not subcutaneous fat mass. The VLDL-mediated increase in gonadal fat mass might be due to the 4-fold greater expression of the VLDL receptor protein in gonadal fat than in subcutaneous fat. DGAT2-overexpressing mice had increased liver TG content, but VLDL secretion was not affected. These results indicate that DGAT1 but not DGAT2 has a role in VLDL synthesis and that increased plasma VLDL concentrations may promote obesity, whereas increased DGAT2 activity has a role in steatosis.  相似文献   

8.
Specific binding and degradation of native and gamma-rays irradiated (100-2000 rad; 100 rad/min; 137Cs) human low density lipoprotein by Chinese hamster V79 cells and mouse peritoneal macrophage line, J774G were studied. Low density lipoproteins were labeled with 125I for studying the specific binding and subsequent degradation. The specific binding and degradation of irradiated 125I-low density lipoproteins (mixed with irradiated native lipoprotein) by Chinese hamster V79 cells are considerably reduced. The uptake depends on the concentration of thiobarbutaric acid-reactive products generated in the irradiated lipoproteins which in turn depends on the concentration of carotenoids. In contrast the rate of uptake of oxidized low density lipoproteins is enhanced by Chinese hamster macrophages. The alteration in the surface amino groups of apo-B of low density lipoprotein either due to direct damage of peptide bonds by gamma-rays or via interaction with lipid peroxides (generated in the core upon irradiation) are invoked as possible mechanisms for the reduction in specific binding and subsequent degradation by V79 cells.  相似文献   

9.
The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr?/?) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers. We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr?/? mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia.  相似文献   

10.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

11.
We have reported that obese leptin-deficient mice (ob/ob) lacking the low-density lipoprotein receptor (LDLR(-/-)) develop severe hyperlipidemia and spontaneous atherosclerosis. In the present study, we show that obese leptin receptor-deficient mice (db/db) lacking LDLR have a similar phenotype, even in the presence of elevated plasma leptin levels. We investigated the mechanism for the hyperlipidemia in obese LDLR(-/-) mice by comparing lipoprotein production and clearance rates in C57BL/6, ob/ob, LDLR(-/-) and ob/ob;LDLR(-/-) mice. Hepatic triglyceride production rates were equally increased ( approximately 1.4-fold, P<.05) in both LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob mice. LDL clearance was decreased ( approximately 1.3- fold, P<.01) to a similar extent in LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob controls. While VLDL clearance was delayed in LDLR(-/-) compared to C57BL/6 and ob/ob mice (2-fold, P<.001), this delay was exaggerated in ob/ob;LDLR(-/-) mice (3.8-fold, P<001). The VLDL clearance defects were due to decreased hepatic uptake compared to C57BL/6 (54% and 26% for LDLR(-/-) and ob/ob;LDLR(-/-), respectively, P<.001). When VLDL was collected from C57BL/6, ob/ob, LDLR(-/-), and ob/ob;LDLR(-/-) donors and injected into LDLR(-/-) recipient mice, counts remaining in the liver were 1.4-fold elevated in mice receiving LDLR(-/-) VLDL and 2-fold increased in mice receiving ob/ob;LDLR(-/-) VLDL compared to controls receiving C57BL/6 VLDL (P<.01). Thus, the increase in plasma lipoproteins in ob/ob;LDLR(-/-) mice is caused by delayed VLDL clearance. This appears to be due to defects in both the liver and the lipoproteins themselves in these obese mice.  相似文献   

12.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

13.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

14.
The oxidative modification of low density lipoprotein (LDL) has been implicated in the early stage of atherosclerosis through multiple potential pathways, and 12/15-lipoxygenase is suggested to be involved in this oxidation process. We demonstrated previously that the 12/15-lipoxygenase overexpressed in mouse macrophage-like J774A.1 cells was required for the cell-mediated LDL oxidation. However, the mechanism of the oxidation of extracellular LDL by the intracellular 12/15-lipoxygenase has not yet been elucidated. In the present study, we found that not only the LDL receptor but also LDL receptor-related protein (LRP), both of which are cell surface native LDL-binding receptors, were down-regulated by the preincubation of the cells with cholesterol or LDL and up-regulated by lipoprotein-deficient serum. Moreover, 12/15-lipoxygenase-expressing cell-mediated LDL oxidation was decreased by the preincubation of the cells with LDL or cholesterol and increased by the preincubation with lipoprotein-deficient serum. Heparin-binding protein 44, an antagonist of the LDL receptor family, also suppressed the cell-mediated LDL oxidation in a dose-dependent manner. The cell-mediated LDL oxidation was dose-dependently blocked by an anti-LRP antibody but not by an anti-LDL receptor antibody. Furthermore, antisense oligodeoxyribonucleotides against LRP reduced the cell-mediated LDL oxidation under the conditions in which the expression of LRP was decreased. The results taken together indicate that LRP was involved essentially for the cell-mediated LDL oxidation by 12/15-lipoxygenase expressed in J774A.1 cells, suggesting an important pathophysiological role of this receptor-enzyme system as the initial trigger of the progression of atherosclerosis.  相似文献   

15.
The binding and degradation of equimolar concentrations of lipoprotein(a) (Lp(a)) and low density lipoprotein (LDL) isolated from the same individual were studied in primary cultures of human monocyte-derived macrophages (HMDM). At 4 degrees C, LDL receptor-mediated binding of both Lp(a) and LDL was of low affinity, being 0.8 and 0.23 microM, respectively. Competitive binding studies indicated that the binding of Lp(a) to HMDM was competed 63% by excess LDL. In contrast to the 4 degrees C binding data, the degradation of Lp(a) at 37 degrees C was mainly nonspecific because the amount of Lp(a) processed by the LDL receptor pathway in 5 h was 17% that of LDL. According to pulse-chase experiments, this phenomenon may be accounted for by the facts that less Lp(a) is bound to HMDM at 37 degrees C and that Lp(a) has a lower intrinsic degradation rate and was not due to increased intracellular accumulation or retroendocytosis of the lipoprotein. Degradation of both lipoproteins was primarily lysosomal and only modestly affected by up- or down-regulation of the LDL receptor. The rate of retroendocytosis in HMDM was approximately equal to the degradation rate and appeared to be independent of the type of lipoprotein used, up- or down-regulation of the LDL receptor, or the presence of the lysosomotropic agent chloroquine. Overall, the results indicate that HMDM degrade Lp(a) mainly via a nonspecific pathway with only 25% of total Lp(a) degradation occurring through the LDL receptor pathway. As both 37 degrees C degradation and 4 degrees C binding of LDL are mainly LDL receptor specific, the different metabolic behavior observed at 37 degrees C suggests that Lp(a) undergoes temperature-induced conformational changes on cooling to 4 degrees C that allows better recognition of Lp(a) by the LDL receptor at a temperature lower than the physiological temperature of 37 degrees C. How apo(a) affects these structural changes remains to be established.  相似文献   

16.
When 125I-labeled native low density lipoprotein was incubated with skin fibroblasts from a patient with homozygous familial hypercholesterolemia, the observed rate of degradation of the protein moiety was less than 5% the rate observed with normal fibroblasts, in agreement with previous studies. When the low density lipoprotein had been first treated with trypsin, with release of about 20% of the protein, its degradation by the patient's fibroblasts was markedly increased 8-20-fold. In contrast, the rate of degradation of the trypsin-treated lipoprotein by normal fibroblasts was, if anything, slightly reduced. In neither the normal cells nor the patient's cells was binding to the cell surface appreciably altered by trypsin treatment of the lipoprotein. Prior incubation with cholesterol and 7-ketocholesterol reduced binding of trypsin-treated low density lipoprotein to normal cells by 67% but did not affect its binding to the patient's cells. The results show that the structural modifications induced by trypsin do not interfere with binding of low density lipoprotein to its normal high affinity receptor nor its degradation by normal cells. However, the modified lipoprotein is much more readily internalized and degraded by cells from the patient with homozygous familial hypercholesterolemia.  相似文献   

17.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

18.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

19.
The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.  相似文献   

20.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号